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In this paper, we proposed a disease classification method 
for brain images using CNN. The research dataset collects 
images of normal, blastoma, meningioma, adenoma, and 
glioblastoma by brain tumor disease from journals such as 
NEJM and AuntMinnie and file
As a result of CNN processing the images for each file 
folder in the Exam_Brain.zip file 10 times, the AUC was 
found to be 0.8825. 
disease classification accuracy of brain magnetic resonanc
imaging was found to be 88.25%.
that the results of this study can be used to classify other 
diseases once the data set is established, and can also be 
used to classify objects in other industries.

Hwunjae Lee
1+YUHS-KRIBB Medical 
Yonsei University College of Medicine, Seoul 03722, 
Republic of Korea
e-mail: hjlee7@yuhs.ac

Giljae Lee
2* National Research Foundation of Korea, Daejeon
Republic of Korea
e-mail: korotkoff@nrf.re.kr

Gippeum Park
2Department of Internal Medicine, Samarkand State 
Medical University, 18 Amir Temur St, Samarkand, 
Uzbekistan

Ken Karl Zhang
1+Department of Intervention Radiology, Thomas Jefferson 
Medical College
 

23) 01; 17-25

http://dx.doi.org/10.31916/sjmi2023

Hwunjae Lee

Received: 20 June 2023 / Accepted: 

The Author(s) 20

Abstract

In this paper, we proposed a disease classification method 
for brain images using CNN. The research dataset collects 
images of normal, blastoma, meningioma, adenoma, and 
glioblastoma by brain tumor disease from journals such as 
NEJM and AuntMinnie and file
As a result of CNN processing the images for each file 
folder in the Exam_Brain.zip file 10 times, the AUC was 
found to be 0.8825. As a result of the experiment, the brain 
disease classification accuracy of brain magnetic resonanc
imaging was found to be 88.25%.
that the results of this study can be used to classify other 
diseases once the data set is established, and can also be 
used to classify objects in other industries.

Hwunjae Lee 
KRIBB Medical 

Yonsei University College of Medicine, Seoul 03722, 
Republic of Korea 

hjlee7@yuhs.ac 

Giljae Lee( )corresponding author
National Research Foundation of Korea, Daejeon

Republic of Korea 
korotkoff@nrf.re.kr

Gippeum Park, Muzaffar Annaev
Department of Internal Medicine, Samarkand State 

Medical University, 18 Amir Temur St, Samarkand, 
Uzbekistan 

Ken Karl Zhang 
Department of Intervention Radiology, Thomas Jefferson 

Medical College 11 Waverly PHB,

5               

http://dx.doi.org/10.31916/sjmi2023

Brain tumor classification by CNN

Hwunjae Lee1+, Giljae Lee

/ Accepted: 10 October

The Author(s) 2023 

Abstract 

In this paper, we proposed a disease classification method 
for brain images using CNN. The research dataset collects 
images of normal, blastoma, meningioma, adenoma, and 
glioblastoma by brain tumor disease from journals such as 
NEJM and AuntMinnie and files them in Exam_Brain.Zip. 
As a result of CNN processing the images for each file 
folder in the Exam_Brain.zip file 10 times, the AUC was 

As a result of the experiment, the brain 
disease classification accuracy of brain magnetic resonanc
imaging was found to be 88.25%. These results indicate 
that the results of this study can be used to classify other 
diseases once the data set is established, and can also be 
used to classify objects in other industries.
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This study has the following limitations. A challenge in 
automatically classifying diseases is the vastness and 
integrity of the data sets. If the da
accuracy of classification will be problematic. Additionally, 
in the medical field, a doctor's decision
is not limited to image data but is made based on 
comprehensive data, and there is a limitation in that 
medic
intervention of a doctor. Determining the decision 
threshold in AI decision
important limitation. This is because setting reference 
points for sensitivity and specificity is not
experts, but the domain of experts in the field. Therefore, 
field medical staff must participate in the process of 
developing AI in medical settings. Future research tasks 
include developing applications that improve performance 
by develo
continuing research in connection with medical big data 
servers.
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Brain tumors have various types and characteristics. 
Tumor characteristics are classified in various ways 
based on cell origin, cell shape, tumor location, size, 
and malignancy level. Glioma is a tumor derived 
from glial cells, the connective tissue of the
and is one of the most common brain tumors. Among 
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gliomas, Astrocytoma is a tumor derived from glial 
cells and appears in various forms depending on the 
grade, while Oligodendroglioma is a tumor derived 
from oligodendrocytes and occurs in the white
of the brain. Lymphoma is a brain tumor derived 
from the lymphatic system that mainly occurs in 
patients with weakened immune function. Neoplastic 
medulloblastoma is a rapidly growing, isolated brain 
tumor that commonly occurs in children and 
originates in the cerebellum. Chordoma is a rare 
tumor that occurs in the pharyngeal gland and is 
located at the base of the brain.
a brain tumor that originates from the tissue 
surrounding the cerebrospinal fluid.
a benign tumor derived from nerve cells and glial 
cells and occurs mainly in children and adolescents.
Some tumors are benign tumors that originate from 
the tissue surrounding the cerebrospinal fluid and are 
relatively less common.
characteristics of brain tumors are diverse, they are 
broadly classified into germinomas, meningioma, 
adenoma, and glioblastoma

Imaging equipment for diagnosing brain tumors 
includes MRI, SPET, SPECT/CT, PET/CT, and 
PET/MRI.
digital images, and the acquired images are managed 
by PACS.
death among people. The chances of survival can be 
increased if the tumor is detected and classified 
correctly at its early stage.
involve invasive techniques such as biopsy, lumbar 
puncture, and spinal tap method, to detect and 
classify brain tumors into benign (non
and malignant (cancerous).
diagnosis algorithm has been designed to increase the 
accuracy of brain tumor detection and classification, 
and thereby replace conventional invasive and time
consuming techniques.

Neural Network (NN) refers to a computational 
model that imitates the structure of the human brain 
to construct an information p
resembles a human
a hidden layer, and an output layer, and a network 
with multiple hidden layers is called a deep neural 
network (DNN).
learning (DL), and DL is achie
many fields such as image classification and object 
detection.
DL model that extracts and classifies image features 
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algorithm, for segmenting Magnetic Resonance 

images to detect the Brain Tumor in its early stages 

and to analyze anatomical structures. A well

segmentation problem within MRI is the task of 

labeling the tissue type wh

(WM), Grey Matter (GM), Cerebrospinal Fluid 

(CSF), and sometimes pathological tissues like 

tumors, etc. A Probabilistic Neural Network with a 

radial basis function will be employed to implement 

an automated Brain Tumor classificat

making was performed in two stages: feature 

extraction using GLCM and PCA and classification 

using the PNN
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performance and classification accuracies. The 
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segmentation algorithm provide better accuracy than 
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was on segmentation, which is different from 
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MESSAOUD, et al. (2010) propose a hybrid 

approach for classifying brain tissue in magnetic 

resonance imaging (MRI) based on genetic algorithm 

(GA) and support vector machine (SVM). A set of 

wavelet

optimal texture features from normal and tumor 

regions using spatial gray level dependence method 

(SGLDM). These features serve as input to the SVM 

classifier. Feature selection, a big problem in 

classification techniques, is so

optimal features are used to classify brain tissue into 

normal, benign, or malignant tumors. The 

performance of the algorithm is evaluated on a series 

of brain tumor images. However, their study also 

went through an image decomposition

wavelet method, and it was found that images could 

only be distinguished into normal, benign, and 

malignant tumors

Kumar (2018) focused on denoising techniques, gray 

level co

extraction and DWT

growth segmentation to reduce complexity and 

improve performance. Morphological filtering was 

then performed to remove noise that may have 

formed after segmentation. A probabilistic neural 

network classifier was u

performance accuracy of tumor localization in brain 

MRI images. The experimental results demonstrated 

the effectiveness of the proposed technique in 

identifying normal and abnormal tissues in brain MR 

images with almost 100% accur

content of this study is different from the content of 

this study in that it is a technology for detecting 

disease areas within a single MRI image. It goes 

through a preprocessing step of segmentation using 

DWT

Royappan

and
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application that improves performance by developing 

the input stage of the program, and continuing 
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