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Abstract- The development of simultaneous therapy 

and imaging systems (Theranostics) for micro RNA 

(miRNA) is demanded the clinical application of 

RNA interference (RNAi) in cancer treatment and 

immune therapy. In this paper, we report a pH-

sensitive, magnetic nanoparticle-based miRNA 

delivery system that can enable the safe and effective 

delivery, imaging by high-resolution Magnetic 

Resonance Imaging (MRI) and therapeutic ability 

through regulating of tumor metastasis and immune 

evasion via miRNA34a. Cationic poly-L-lysine-graft 

(PL) with a reactive silane moiety was stably 

immobilized onto the surface of the assembled 

manganese ferrite nanoparticles (MFs) through an 

emulsion process, ensuring high water solubility, 

enhanced MR contrast effect, and endosome-

disrupting functionality.  
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The MRI based theranostic nanovectors (MNVs) 

were then complexed with miRNA34a via 

electrostatic interaction to verify the regulation for 

cancer metastasis by CD44 and immune avoidance 

by regulating PD-L1. These results showed a novel 

platform for synergetic cancer therapy based on 

miRNA. 
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I.  Introduction 

MicroRNAs (miRNAs)—small (20–22 nucleotide), 

endogenous, non-coding RNAs—act as regulators of 

gene expression at the post-transcriptional level 

through RNA interference. Mature miRNAs, which 

can regulate multiple target genes, associate with 3’-

untranslated regions (3’-UTR) of specific target 

mRNAs to suppress translation and occasionally lead 

to their degradation. [1][2] Also, microRNAs 

(miRNAs) are actively involved in a variety of 

cellular processes, including differentiation, 

proliferation, and apoptosis. [3] Aberrant miRNA 

levels have an impact on many diseases, such as 

cancer, where miRNAs serve as both tumor 

suppressors and oncogenes. [3] In addition, 



Programmed death-ligand 1 (PD-L1) is a 40kDa type 

1 transmembrane protein that has been considered to 

play a major role in suppressing the immune system 

during particular events such as pregnancy, tissue 

allografts, autoimmune disease and other disease 

states such as hepatitis, it may allow cancers to evade 

the host immune system. [4][5] An analysis of 196 

tumor specimens from patients with renal cell 

carcinoma found that high tumor expression of PD-

L1 was associated with increased tumor 

aggressiveness and a 4.5-fold increased risk of death. 

[6] Consequently, tumor can exploit the PD-L1 

pathway to inhibit the anti-tumor immune response. 

[7] Recently, PD-L1 which plays an important role in 

the antitumor effect, has been studied in the world, 

especially, research in the miRNA-mediated 

regulation of PD-L1 has been widely progressed. [7] 

It had previously demonstrated that miR-200 

inhibited PD-L1, explaining how prevented 

epithelial-to-mesenchymal transition and metastasis 

in lung cancer, Welsh et al have investigated the role 

of miR34a in regulating PD-L1 activity, also, 

miRNA34a modulates PD-L1 to induce immune 

evasion, as well as to regulate cancer metastasis by 

regulating CD44, an important marker of cancer. 

[8][9] However, it is big issue for delivering miRNA, 

in order to safely deliver of Gene such as miRNA in 

vivo, appropriate delivery systems are also required 

for efficient and safe delivery of miRNAs. Recent 

research have evaluated many nonviral vectors 

incorporating imaging agents (i.e., magnetic 

nanoparticles, gold nanoparticles and fluorescence 

molecules) as promising carriers for simultaneous 

imaging and gene delivery. [10][11] These research 

have shown that such vectors can improve 

therapeutic efficacy and tumor accumulation through 

real-time monitoring of the miRNA-delivery process, 

for the clinical applicability of miRNA-mediated 

therapy, simultaneous imaging and gene delivery is 

important to improve therapeutic efficacy, bio-

distribution, and tumor accumulation of nanovectors 

by facilitating visualization of the miRNA delivery 

process. For this purpose, a number of inorganic 

formulations (i.e., magnetic nanoparticles, gold 

nanoparticles, and quantum dots, etc.) are being 

evaluated as attractive materials for miRNA delivery 

and imaging due to their special properties such as 

facile surface modification, size control, and imaging 

modalities. Among them, magnetic nanoparticles 

(MNPs) enable the monitoring of miRNA delivery by 

non-invasive and real-time magnetic resonance 

imaging (MRI), because this technique can rapidly 

acquire multi-informational high resolution images. 

To accomplish this, miRNAs need to be reversibly 

packed into MNPs allowing them to be transported 

into the cytoplasm and carry out the RNAi functional 

mechanism effectively. Several approaches can be 

implemented to introduce miRNA into MNPs, 

including cleavable linkers, electrostatic interactions, 

or incorporation into polymeric matrix composites. 

For the safe and effective intracellular delivery of 

miRNA with MR contrast agents, the nanoplatform 

should 1) be sufficiently cationic to condense 

miRNA, 2) have no significant inhibition of growth 

and proliferation on cells, 3) be promptly 

 

 

Scheme.  (A) Schematic illustration of the 
synthesis of pH-sensitive magnetic nanovectors 
(MNV) with and magnetic nanoparticles (MNPs) 
through the emulsion process, and the formation of 
MNV/miRNA34a complexes via electrostatic 
interaction. (B) Schematic illustration of a rapid 



change in the surface charge of MNV in response to 
a reduction in pH as a result of pH-activated 

protonation.  

disassembled under pH reduction to lead endosomal 

escape, and 4) have ultrasensitive magnetic 

properties after uptake. Herein, we developed 

magnetic nanovectors (MNVs) by the emulsion and 

solvent evaporation method using pH-sensitive 

polycations that stabilize and envelop MNPs in 

Schematic image, and demonstrated their utility for 

cancer detection by MRI and synchronous delivery 

of therapeutic miRNA. For the complexation of 

miRNA and to provide a buffering effect under acidic 

pH, the hydrophilic and cationic homopolymer poly-

L-lysine (PL) with a silane terminal group was first 

prepared by consecutive processes of ring-opening 

polymerization and deprotection. The obtained PL 

was used not only for the self-assembly of the 

manganese ferrite (MnFe2O4) nanoparticles (MFs) 

but also for gene loading at the outer layer of MFs, 

finally producing water-dispersible, magnetic 

particles core-polycation shell nanostructures. These 

results demonstrate that magnetic nanovectors have 

potential as theragnostic nanosystems for regulating 

immune evasion and tumor metastasis based on 

miRNA in effective cancer therapy. 

 

II.  Materials and Methods 

A. Materials 

N6-carbobenzyloxy-L-lysine (LysZ), 4-

imidazoleacetic acid, (3-aminopropyl) 

trimethoxysilane (APTMS), 1-ethyl-3-N,N-

dimethylaminopropyl carbodiimide (EDC) 

hydrochloride, trifluoroacetic acid (TFA), 

hydrobromic acid solution (33 wt % in acetic acid) 

(HBr/AcOH), anhydrous tetrahydrofuran (THF), 

N,N-dimethylformamide (DMF), dimethylsulfoxide 

(DMSO), 1N sodium hydroxide (NaOH) solution, 

iron (III) acetylacetonate, manganese (II) 

acetylacetonate, 1,2-hexadecanediol, lauric acid, 

lauryl amine, benzyl ether, deuterium oxide (D2O), 

and dimethylsulfoxide-d6 (DMSO-d6) were 

purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Triphosgene was acquired from Tokyo 

Chemical Industry Co. (Tokyo, Japan), and 1-

hydroxybenzotriazole hydrate (HOBt) was obtained 

from Daejung Chemicals & Metals Co. (Shiheng, 

Korea). n-Hexane and diethyl ether were obtained 

from Ducksan Scientific Co. (Seoul, Korea) The 

miRNA34a (miR34a) (Sense : ACA ACC AGC UAA 

GAC ACU GCC A/iSp9//3ThioMC3-D, antisense : 

UGG CAG UGU CUU AGC UGG UUG U) was 

purchased from Messenger of Biotechnology Co. 

(Gyeonggi, Korea), and the hydroxyl PEG Thiol was 

purchased Nanocs.  

B. Methods 

1. Synthesis of N6-carbobenzyloxy-L-lysine N-

carboxyanhydride (LysZ-NCA) 

Synthesis of N-carboxyanhydride of L-lysine was 

conveyed out by the Fuchs-Farthing method using 

triphosgene. To make ready N6-carbobenzyloxy-L-

lysine (LysZ) N-carboxyanhydride (LysZ-NCA), 

LysZ (2 g, 7.13 mmol) was suspended in 145 mL of 

anhydrous THF. Triphosgene (0.85 g, 2.85 mmol) 

solution dissolved in 5 mL of THF was injected into 

the LysZ-suspended solution using a syringe under 

nitrogen atmosphere. The reaction was performed at 

35°C for 3 hr under magnetic stirring, and the 

appearance of the reactant solution changed from 

cloudy to clear after all LysZ molecules were 

transformed into LysZ-NCA. The solvent was 

filtered through a 0.2-μm PTFE syringe filter 



(Advantec MFS, Inc., Japan) to remove impurities, 

followed by evaporation of the filtrate under the 

reduced pressure. The concentrated reactants were 

introduced to cold excess n-hexane, and the n-

hexane/THF mixture was then recrystallized at -20°C 

overnight. The precipitants were purified three times 

by filtration and dried at room temperature in vacuo. 

Yield: 70%. FT-IR (cm-1): ν = 3340 (s, NH), 3070-

2870 (s, CH2), 1855/1810/1774 (s, C=O in 

anhydrides of NCA), 1745 (s, C=O in Z group), 1685 

(s, C=O in amide of NCA) 1528 (s, NH in amide of 

NCA). 1H-NMR (400 MHz, DMSO-d6, ppm): δ = 

9.09 (w, α-NH), 7.54-7.26 (s, Ar-H in benzyl groups), 

5.04–5.00 (s, -CH2 in benzyl groups), 4.44–4.41 (w, 

α-CH), 3.01–2.96 (m, ε-CH2), 1.72–1.30 (m, γ-CH2 

and δ-CH2). 

2. Synthesis of APTMS-initiated poly-L-lysine (PL) 

by ring opening polymerization 

To synthesize poly (N6-carbobenzyloxy-L-lysine) 

(PLZ), the polymerization of LysZ-NCA initiated by 

APTMS proceeded as follows. Briefly, LysZ-NCA 

(10 g, 32.65 mmol) was dissolved in 50 mL of 

anhydrous DMF. APTMS (73.16 mg, 0.41 mmol) 

was injected into the solution as an initiator using a 

syringe under a blanket of nitrogen, and the mixture 

was reacted at 40°C for 24 hr. The solvent was 

evaporated under reduced pressure and precipitated 

in excess cold diethyl ether. The purified precipitates 

were isolated by repeated filtration and dried under 

high vacuum. Yield: 61.11%. FT-IR (cm-1): ν = 3198 

(s, NH), 3062-2866 (s, CH2), 1693 (s, C=O in Z 

group), 1653 (s, C=O in amide), 1530 (s, NH in 

amide). 1H-NMR (400 MHz, DMSO-d6, ppm): δ = 

8.44–7.88 (w, α-NH), 7.53–7.19 (s, Ar-H in benzyl 

groups), 4.99 (s, -CH2 in benzyl groups), 4.31-4.11 

(w, α-CH), 2.95 (m, ε-CH2), 1.62–1.27 (m, γ-CH2 

and δ-CH2). The obtained PLZ was further 

characterized by gel permeation chromatography 

(YL9100 HPLC, Young Lin Instrument Co., Ltd., 

Korea) equipped with two Waters styragel HR3 

columns (Waters Co., Milford, MA) and a refractive 

index detector through HPLC-grade DMF at 1.0 

mL/min. The molecular weight distribution (Mw/Mn) 

of the polymer was determined to be 1.2. To remove 

the Z protection groups, PLZ (7 g, 0.33 mmol) was 

dissolved in 70 mL of TFA and then 10 mL of 

HBr/AcOH was added to the mixture. The mixture 

was gently stirred at room temperature for 1.5 hr and 

the resulting product was isolated three times by 

filtration with excess diethyl ether. The polymer was 

further dialyzed against multiple ultrapure distilled 

water. 

3. Fabrication of PL-coated magnetic 

nanoparticles  

Magnetic Nanovectors (MNVs) as gene loadable MR 

imaging agents were prepared by the nano-emulsion 

method. Firstly, monodisperse manganese ferrite 

(MnFe2O4) nanoparticles (MFs) were synthesized by 

the thermal decomposition of metal-organic 

precursors in the presence of nonpolar organic 

solvents. In detail, iron (III) acetylacetonate (2 

mmol), manganese (II) acetylacetonate (1 mmol), 

1,2-hexadecanediol (10 mmol), lauric acid (6 mmol), 

and laurylamine (6 mmol) were dissolved in 20 mL 

of benzyl ether. The solution was preheated to 200°C 

for 2 hr under an ambient nitrogen atmosphere and 

refluxed at 300°C for 1 hr. After cooling the reactants 

to room temperature, the products were purified 

using an excess of pure ethanol. Approximately 11-

nm MFs were synthesized using the seed-mediated 

growth method. Twenty milligrams of the as-

synthesized MFs were dissolved in 4 mL of n-hexane 

and subsequently added into 20 mL of DW 

containing 50, 100, or 200 mg of PL .After mutual 



saturation of the organic and aqueous phases, the 

mixture was ultrasonicated at 200 W for 20 min with 

vigorous stirring at 1,500 rpm, and stirred for 4 hr to 

evaporate the residual hexane.  

4. Preparation of miRNA loaded magnetic 

nanoparticles 

The miRNA condensation ability of MNPs was 

confirmed by the gel retardation assay. To compare 

miRNA-loading ability, miRNA was also complexed 

with varying amounts of MNPs. The prepared 

complexes were mixed with 6ⅹ HiQ ™ goRed 

(Genepole, Seoul, Korea), then loaded into a 2% 

agarose gel (w/v), and electrophoresed in Tris – 

borate – EDTA (TBE) buffer at 100 V for 20 min. 

The retardation of complexes was visualized by a UV 

lamp using a Gel Doc System. 

 

III. Experiments. 

1. Characterizations of magnetic nanovectors 

The average hydrodynamic diameters and zeta 

potentials of the obtained magnetic Nanovectors 

(MNVs) were measured using dynamic laser 

scattering at room temperature. Their size 

distributions and morphologies were observed by 

transmission electron microscopy at an accelerating 

voltage of 200 kV. The concentration of Mn plus Fe 

ions in the MNVs was measured by using inductively 

coupled plasma-atomic emission spectrometry (ICP-

AES) analysis. The magnetic hysteresis loop and the 

saturated magnetization value were obtained using a 

vibrating sample magnetometer at 25°C. The amount 

of MFs encapsulated in MNVs was measured by 

thermal gravimetric analysis. The T2 relaxivity (r2) 

data of the MNV solution were obtained through 

magnetic resonance (MR) imaging analysis. 

2. Cell viability test 

The cytotoxicity of MNVs in gastric cancer MDA-

MB-231 cells was evaluated by a colorimetric assay, 

based on the cellular reduction of 3-(4,5-

dimethylthiazoly-2)-2,5-diphenyltetrazolium bromide 

(MTT) (Cell Proliferation Kit I, Roche, Germany) in 

metabolically active cells. MDA-MB-231 cells (1 × 

104 cells/well) were seeded into 96-microwell plates, 

incubated in RPMI 1640 medium containing 5% fetal 

bovine serum (FBS) and 1% antibiotics at 37°C 

overnight in a humidified atmosphere with 5% CO2, 

and then treated with MNVs containing medium with 

5% FBS at various concentrations for additional 24 

hr. After incubation, the yellow MTT solution was 

added and the formazan crystals formed were 

solubilized with 10% sodium dodecyl sulfate in 0.01 

M HCl. Then the relative percentage of cell viability 

was calculated from the formazan intensity ratio of 

treated to non-treated control cells and shown as an 

average ± standard deviation. 

3. MR imaging procedures 

We performed solution and in vitro, in vivo MR 

imaging experiments with a 4.7 T clinical MRI 

instrument. The R 2 values (T2 relaxation rate, 1/T2, 

s-1) of the MNV solution and miR34a-MNP treated 

cells (1 x 107) were measured by using the 

conventional T2 sequence at room temperature. For 

the acquisition of T2 weight MR images of MNV 

solution, MNV treated cells and in vivo MR imaging 

the following parameters were adopted : resolution of 

xxx ⅹ xxx mm, section thickness of  x mm  TE = x 

ms, TR = x ms, and number of acquisitions = 1, The 

r2 (Mm-1s-1 ) is equal to the ration of the R2 to the 

MNV concentration.  



4. Celluar uptake of MNVs  

To prepare cellular TEM samples, MDA-MB-231 

cells (1 × 106) were harvested after TrypLETM 

(Gibco®) treatment, washed in triplicate with 

blocking buffer (0.03% bovine serum albumin and 

0.01% NaN3 in phosphate-buffered solution, pH 7.4 

and 10 mM) to prevent non-specific binding, and 

gently pelleted. Subsequently, the cells were 

suspended in MNV solution (0.46 μg/mL) and 

incubated for 30 min on ice and 30 min at 37°C. 

After incubation, the cells were washed three times 

with blocking buffer and fixed according to the 

standard fixation and embedding protocol for resin-

section TEM. The sample resin blocks were trimmed 

and sectioned using a LEICA Ultracut UCT Ultra-

microtome (Leica Microsystems Ltd., Austria). 

Cellular uptake of MNVs was also examined by the 

Prussian blue staining method. To stain magnetic 

components in MDA-MB-231 cells treated with 

MNVs (0.46 μg/mL), the cells were incubated with 2% 

potassium ferrocyanide in 10% HCl and then 

counterstained with Nuclear Fast Red (Sigma-

Aldrich). Cellular internalization of the MNVs was 

observed by TEM at an accelerating voltage of 80 kV 

and an epi-fluorescence microscope.  

IV. Result & discussion 

1. In vitro transfection and quantitative reverse 

transcriptase-polymerase chain reaction (qRT-

PCR) analysis 

To measure CD44, PDL1 mRNA expression levels in 

cancer cells, real time qRT-PCR analysis with 

internal standards was performed. Firstly, MDA-MB-

231 cells (2 × 105 cells/well) were seeded in six-well 

plates containing 2 mL culture medium 

supplemented with 5 % FBS and incubated at 37°C 

overnight to reach 70% confluence at the time of 

transfection. The culture medium was then replaced 

with serum-free medium and 100 μL of MNPs 

containing miR34a or control miR34a (100 pmol) at 

a polycation/miRNA weight ratio of 1:2 was added to 

each well. As a control, MDA-MB-231 cells were 

also transfected with free miR34a or control miR34a. 

After 6 hr incubation, the medium was replaced with 

2 mL fresh culture medium and further incubated at 

37°C for 48 hr. The cells were harvested 48 hr after 

transfection, and total RNA was isolated from the 

cells with the RNeasy® Plus Mini Kit (QIAGEN, 

Hilden, Germany), according to the manufacturer’s 

instructions. Complementary DNA (cDNA) was 

synthesized from 2 µg of total RNA using the High 

Capacity RNA-to-cDNA kit (Applied Biosystems®). 

The resulting cDNA was amplified by PCR, 

conducted with the QuantiMix SYBR Kit 

(PhileKorea Technology, Daejeon, Korea) on a real-

time PCR system (LightCycler® 480 System, Roche). 

Primer sequences were as follows: CD44, forward 

5´-CCTCTT GGCCTTGGCTTTG-3´ and reverse 5´-

TCCATTGCCACTGTTGATCA-3´; PD-L1, forward 

5’- AAATGGAACCTGGCGAAAGC -3’ and reverse 

5’- GATGAGCCCCTCAGGCATTT; GAPDH, 

forward 5´- GCTCTCTGCTCCTCCTGTTC-3´ and 

reverse 5´-TGACTC CGACCTTCACCTTC-3´. The 

PCR conditions were as follow: initial denaturation 

at 95°C for 10 min; 45 cycles of amplification at 

95°C for 10 sec, at 60°C for 10 sec, and at 72°C for 

10 sec. Each sample was performed in triplicate. The 

relative CD44 mRNA expression value was 

normalized to the endogenous reference gene 

(GAPDH) in the corresponding samples and relative 

to non-treated cells, and calculated by the ∆∆Ct 

method.  

2. In vitro Western blot analysis 

To assess the down-regulation of the CD44, PD-



L1 gene in MDA-MB-231 cells, the cells were 

harvested and lysed in cold RIPA buffer (Pierce®, 

Thermo Scientific) containing a protease 

inhibitor cocktail tablet (complete Mini, Roche). 

The lysates were incubated at 4°C for 30 min 

and centrifuged at 13,000 rpm for 15 min. The 

supernatants were analysed for protein 

concentrations using the bicinchoninic acid 

(BCA) Protein Assay (Pierce®). Equal amounts 

(20 μg) of protein were subjected to 

electrophoresis on sodium dodecyl sulfate 

(SDS)-polyacrylamide gels and then transferred 

to a nitrocellulose blotting membrane 

(Amersham™ Hybond ECL, GE Healthcare). 

The blotted membranes were immunostained 

with antibodies specific for CD44 (156-3C11, 

Cell Signalling Technology, Inc., USA), PD-L1 

(22C3, Dako, Inc, USA) and GAPDH antigens 

(6C5, Santa Cruz Biotechnology, Inc., USA). 

The signals were developed by a standard 

enhanced chemiluminescence (ECL) method 

(Pierce® ECL Plus Western Blotting Substrate) 

according to the manufacture’s protocol. 

3. Wound healing assay 

For the evaluation of the migration and mobility 

of MDA-MB-231 cells treated with MNVs, the 

wound healing assay was carried out. The cells 

were transfected with nanovector formulations 

with miR-34a or control miR and grown to 100% 

confluence in culture media. Using a sterile 

pipette tip, the cell monolayer was mechanically 

scratched inducing the wound and further 

incubated with culture media for 4 days. The 

images of the wound closing were captured with 

an inverted microscope. 

4. Invasion assay analysis 

At first, to lay HUVEC cells, Coat the inside of 

transwell with 50µL Fibronectin (10 µg/mL) at 

the bottom and dry for 2-3 hours at RT. Coat the 

bottom of transwell with 10µL of 0.2% gelatin 

and dry for 30 min at RT. After that add 2 ⅹ 104 

endothelial cells (HUVEC) in 50µL of culture 

medium (M199) to insert. And culture the cells 

for 48 hours until forming monolayer. At 

seconds, in order to stain the cells, when the 

cells reached 70% confluence remove the 

medium from the dish. And add fresh medium 

(0% FBS) with Cell tracker dye (0.5µM) 

Incubate the cells for 1hours. Replace the dye 

working solution with culture medium (10% 

FBS) for 30min. To lay tumor cells which 

treated cell tracker, harvest tumor cells with 0% 

culture medium, and add 1 x 105/50 µL tumor 

cells to insert. And add 605 µL with culture 

medium (10% FBS) to the lower chamber. 

Incubate the cells for 48 hours. To measure cell 

which passing the MEM, remove the upper cells 

of membrane by cotton swab. Lysis the cells on 

lower membrane with 200 µL lysis buffer, 2-3 

hours at RT. Read absorbance (Abs/Em : 

492/517) 

5. In vivo tumor growth inhibition, target gene 

silencing and immune evasion 

For the inhibition study of tumor growth using 

MNVs, here we used a subcutaneous xenograft 



tumor model that allows routine and facile 

measurements of tumor volume. A cancer model 

was established by subcutaneously injecting 

MDA-MB-231 cells (107 cells suspended in 50 

mL of PBS per animal) into the breast of the 

BALB/c-nude mice. Tumor bearing mice were 

randomized into 3 different groups for 

treatments (non-treated, control 

miRNA34a/MNV treated groups and miR-

34a/MNV-treated groups), when the tumor 

volume increased to 200 mm3. Prior to 

administration of each formulation, animals 

were anesthetized and injected with control 

miRNA34a/MNV and miR-34a/MNV (1 nmole 

of miR-34a per injection) through the tail vein 

twice per week for 3 weeks. The tumor volume 

was calculated using the formula: V ¼ ((4/3) p_ 

a2b)2, where a and b are the half length of the 

minor and minor axis of tumors determined by a 

caliper. All mice were sacrificed after 7 weeks 

post-treatment and the extracted tumor tissues 

were used for H&E staining, TUNEL assay. The 

tumor sections were then counterstained with 

Hoechst 33342 and PE mouse anti-human CD44 

(BD Pharmingen, Cat. No. 550989), PD-L1 

(Dako, Cat. No. 22C3). The expression levels of 

CD44, PD-L1 in the excised tumor tissues after 

crushing in liquid nitrogen were also verified by 

western blot assay using the same procedures as 

described in in vitro analysis 

V. Conclusion 

We present the pH-sensitive, magnetic 

nanoparticle-based miRNA delivery system that 

can facilitate the safe and efficient delivery, 

imaging by high resolution MRI and therapeutic 

ability through regulating of tumor metastasis 

and immune evasion via miRNA34a. Cationic 

poly-L-lysine-graft (PL) with a reactive silane 

moiety was stably immobilized onto the surface 

of the assembled manganese ferrite 

nanoparticles (MFs) through an emulsion 

process, ensuring high water solubility, 

enhanced MR contrast effect, and endosome-

disrupting functionality. We verified the in vivo 

and in vitro specific CD44 gene knockdown 

effects of MNVs in MDA-MB-231 cells using 

both qPCR and Western blot analysis. We found 

that the regulation through miR34a enable to 

cancer metastasis by CD44 and immune 

avoidance by regulating PD-L1. Consequently, 

we designed theranostic system would be 

beneficial to expand research on miRNA based 

and immune therapy for cancer.  
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Abstract-  In this study, we proposed a method of 

learning neural networks by optimizing neural 

network input parameters to discern MRI-weighted 

images. To this end, we segmented the weighting 

domain of MRI. In feature extraction, the original 

image and segmented image were extracted by DWT, 

respectively.  
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A neural network was trained by inputting extracted 

feature values.  As a result of the experiment, it was 

found that the R-value of the segmented image is 

closer to 1 than the original image. The reason is that 

the images obtained by segmenting the areas of the 

weighted parts already have similarities. Also, it was 

found that the similarity between T1 and T2 

weighted images is high in the same combination, 

and the similarity is relatively low in different 

weighted images. The most important issue in 

medical imaging is ensuring the confidence of 

radiologists using artificial intelligence. To solve this 

problem, it is of utmost importance that the algorithm 

developer and radiological technologist work 

together to provide a solution that is integrated with 

the radiologist's workflow. 

Key word: Image processing, Discrete Wavelet 

Transform, MR pulse sequence, T2 Weighted Image, 

MR Molecular Imaging, Magnetic nanoparticles 

I. Introduction 

Wilhelm Conrad Röntgen discovered a short-

wavelength electromagnetic wave called X-rays 

on November 8, 1895,[1] and he won the 1901 

Nobel Prize for Physics.  For the first time in 

history, the discovery of X-rays provided the 

first advance in modern medicine by providing a 



way to look inside the human body. 

Recent medical images include Digital 

Radiography (DR), Computed Radiography 

(CR), Computed Tomography (CT), Positron 

Emission Tomography (PET), Single Positron 

Emission Tomography (SPECT), Ultra 

Sonography, and Magnetic Resonance Imaging 

(MRI). [2] 

The World Economic Forum (WEF), chaired 

by Klaus Schwab, advocated the fourth 

industrial revolution in 2016[3]. The Fourth 

Industrial Revolution can be explained by a 

variety of new technologies that integrate the 

physical, biological and digital worlds based on 

big data and affect all sectors, including the 

economy, industry and healthcare.[3] The most 

impact of the 4th industry on medical care is the 

issue of big data-based artificial intelligence 

technology.  

In this study, we propose a method of learning 

neural networks by optimizing neural network input 

parameters to discern MRI-weighted images. To this 

end, we segmented the weighting domain of MRI. In 

feature extraction, the original image and segmented 

image were extracted by DWT, respectively. A 

neural network was trained by inputting extracted 

feature values. If the feature extraction value is input 

and learned, the inference time of the AI will be 

reduced and the inference result will be accurate. 

 

I. Materials and methods 

1. Magnetic Resonance Imaging 

Magnetic resonance imaging forms images by 

measuring patterns of hydrogen nuclei interacting 

with magnetic fields in magnetic fields and 

absorbing and emitting electromagnetic waves at 

specific frequencies.[4] About 70% of the human 

weight is body fluid, most of which is water. The 

proton, the nucleus of the hydrogen atom of water, 

has a spin in an arbitrary direction, and when it 

enters a strong magnetic field, the spin direction of 

the hydrogen nucleus is aligned along the direction 

of the magnetic field. In this state, when a high-

frequency electromagnetic pulse is applied in a 

vertical direction, the hydrogen nucleus absorbs 

the energy of electromagnetic waves and changes 

the spin in the opposite direction of the magnetic 

field.[4] After that, when the pulse is broken, the 

hydrogen nucleus with reverse spin returns to its 

original state, releasing weak electromagnetic 

waves.[4] This electromagnetic wave can be 

detected to track and image the position of the 

hydrogen atom nucleus from which the 

electromagnetic wave is emitted. The relaxation 

time at which the hydrogen nucleus with reverse 

spin returns to its original state has two values, 'T1' 

and 'T2', depending on the relaxation coefficient of 

the spin. The relaxation of the spin of the hydrogen 

nucleus by interaction with the spin of the 

surrounding hydrogen nucleus is called spin-spin 

relaxation, and the time constant thereof is called 

T2.[4] In contrast, the relaxation of spin by 

interaction with the lattice structure of the 

surrounding tissue is called spin-lattice relaxation, 

and this time constant is called T1. T1 and T2 

differ greatly depending on the surrounding tissues 

of the hydrogen nucleus, and the magnetic 

resonance image makes this relaxation time planar 

image[4]. Figure 1 shows a model of the MRI 

scanner and Figure 2 shows the images acquired 

by the MRI scanner. MRI images used in the 

experiment were obtained from The Cancer 

Imaging Archive. The obtained image was 

adjusted to 256 X 256 pixels, and the shape of the 



image was transformed into a bit map (* .bmp) 

form. 

 
Figure 1. MRI 

Scanner[https://www.javatpoint.com/mri-full-form] 

 
Figure 2. Brain Image 

2. Image segmentation 

In digital image processing, image 

segmentation is the process of dividing a digital 

image into segments.  The goal of 

segmentation is to simplify or change the 

representation of the image to something more 

meaningful and easier to analyze.[5][6] Image 

segmentation is commonly used to find objects 

and boundaries (lines, curves, etc.) in an image. 

More precisely, image segmentation is the 

process of assigning a label to every pixel in an 

image so that pixels with the same label share 

specific characteristics. The result of the image 

segmentation is a set of segments that 

collectively covered with a set of contours 

extracted from the whole image or the 

image.[5][6] Each pixel in the area is similar in 

terms of some characteristics or calculated 

properties, such as color, intensity, or texture. 

Adjacent region varies considerably concerning 

for to the same characteristics.[7] When applied 

to image stacks, usually in medical imaging, 

contours created after image segmentation can 

be used to create 3D reconstructions using an 

interpolation algorithm such as the Marching 

cube.[8]  Machine vision is a technology and 

method commonly used in the industry to 

provide imaging-based automated inspection 

and analysis for applications such as automated 

inspection, process control, and robot 

guidance.[9] Machine vision refers to many 

technologies, software and hardware products, 

integrated systems, operations, methods, and 

expertise. Machine vision in the field of systems 

engineering can be considered distinct from 

computer vision, a form of computer science.[9] 

We want to solve real problems by integrating 

and applying existing technologies in new ways. 

This term is widely used for these functions in 

industrial automation environments, but it is 

also used for these functions in other 

environments such as security and vehicle 

guidance. The whole machine vision process 

involves planning the requirements and details 

of the project and then creating a solution. 

During run time, the process starts with imaging 

and then automatically analyzes the image and 

extracts the necessary information.[10] The 

simplest method of image segmentation is called 

the threshold method. This method converts 

grayscale images to binary images based on the 

clip level. The key to this method is to choose a 

threshold. Several popular methods are used in 

the industry, including the maximum entropy 

method, the balance histogram threshold, the 

Oats method (maximum variance), and the k-

mean clustering.[11] Recently, a method for 



thresholding computed tomography (CT) 

images has been developed. The key idea is that, 

unlike Otsu's method, the threshold is derived 

from the radiograph instead of the 

(reconstructed) image.[12][13] The new method 

suggested the use of multidimensional fuzzy 

rule-based nonlinear thresholds.  In these works, 

the determination of the membership of each 

pixel for a segment is based on 

multidimensional rules derived from fuzzy logic 

and evolutionary algorithms based on the image 

lighting environment and application.[14] 

3. Discrete Wavelet Transform(DWT) 

Wavelet transform was proposed in the mid-

1980s, and it has been used in various fields 

such as signal processing, image processing, 

computer vision, image compression, 

biochemistry medicine, etc.[15] For image 

processing, it provides an extremely flexible 

multi-resolution image and can decompose an 

original image into different subband images 

including low- and high-frequencies. Therefore 

people can choose the specific resolution data or 

subband images upon their demands.[16]  A 2-D 

DWT of an image is illustrated in Figure 3(a). 

When the original image is decomposed into 

four-subband images, it has to deal with row 

and column directions separately. First, the 

high-pass filter G and the low-pass filter H are 

exploited for each row data, and then are down-

sampled by 2 to get high- and low-frequency 

components of the row. Next, the high- and the 

low-pass filters are applied again for each high- 

and low-frequency components of the column, 

and then are down-sampled by 2. By way of the 

above processing, the four-subband images are 

generated: HH, HL, LH, and LL. Each subband 

image has its feature, such as the low-frequency 

information is preserved in the LL-band and the 

high-frequency information is almost preserved 

in the HH-, HL-, and LH-bands. The LL-

subband image can be further decomposed in 

the same way for the second level subband 

image.[17] By using 2-D DWT, an image can be 

decomposed into any level of subband images, 

as shown in Figure 3(b). 

 

 
Figure 3. Diagrams of DWT image 
decomposition: (a) the 1-L 2-D analysis DWT 
image decomposition process, (b) the 2-L 2-D 

analysis DWT subband.  

 

4. Artificial Intelligence in Medicine 

Artificial intelligence (AI) has led to many 

medical advancements, from AI-based software 

for the management of medical records to 

diagnosing and recognizing conditions. Most of 

the new work on artificial intelligence in the 

medical field is related to diagnostic technology, 

and AI systems are trained to recognize the 

characteristics of various conditions.[18][19] 

Through ‘machine learning’ (ML), AI provides 

techniques that uncover complex associations 

that cannot easily be reduced to an equation.[20] 

For example, neural networks represent data 

through vast numbers of interconnected neurons 

in a similar fashion to the human brain.  This 

allows ML systems to approach complex 

problem solving just as a clinician might by 

carefully weighing evidence to reach reasoned 

conclusions.[21] However, unlike a single 



clinician, these systems can simultaneously 

observe and rapidly process an almost limitless 

number of inputs. Furthermore, these systems 

can learn from each incremental case and can be 

exposed, within minutes, to more cases than a 

clinician could see in many lifetimes. Artificial 

intelligence complements the vast number of 

digital images created in hospitals, the products 

of next-generation imaging scanners, especially 

hybrids that include MRI, CT, PET, and SPECT. 

In recent years, machine learning algorithms are 

rapidly being used in medical image analysis. 

These machine learning techniques are used to 

extract compact information to improve the 

performance of medical image analysis. 

Recently, deep learning methods using deep 

convolutional neural networks have been 

applied to medical image analysis to provide 

promising results.[22] The neural network model 

is shown in Figure 4 below. 

 

Figure 4. A neural network model. 

Applications cover the full spectrum of 

medical image analysis, including detection, 

segmentation, classification, and computer-

assisted diagnostics.[23] As a result, if artificial 

intelligence and healthcare professionals interact 

to accommodate deep thinking platforms, such 

as automation, in diagnosing a patient's disease 

state, artificial intelligence will play an 

important role in the analysis of medical image 

data, which will only be feasible.[24][25]  

II. Experiment and result 

For the experiment, we acquired T1 and T2 

weighted images from The Cancer Imaging 

Archive site. The image was preprocessed to 

256 x 256 pixels for segmentation and stored in 

a bitmap format. The stored images were 

segmented with 127 as the threshold. Six 

parameters per image were extracted from the 

segmented image using DWT. We learned 

neural networks by inputting extracted 

parameters into the neural networks. Figure 5 is 

a flow chart showing the whole process of the 

experiment. 

 
Figure 5  Flow-chart of experiment. 

1. Image segmentation 

 Image segmentation plays an important role in 

many medical imaging applications by automating or 



facilitating the depiction of anatomical structures and 

other areas of interest. We segmented the highlighted 

portion of the T1 weighted and T2 weighted images 

of the MRI image with a threshold of 127. Table 1 

below shows the original and segmented images of 

the T1 and T2 weighted images. 

Table 1. Segmentation images 
 T1WI_1 T1WI_2 T2WI_1 T2WI_2 
 

original image 

    
 

segmented  
image 

    

 
2. Discrete Wavelet Transform 

In numerical and functional analysis, the 

discrete wavelet transform (DWT) is any 

wavelet transform in which the wavelet is 

sampled discretely. As with other wavelet 

transforms, the main advantage over Fourier 

transforms is time resolution. We did MatLab 

programming to extract six feature parameters. 

The variable names of the extracted parameters 

are as follows: 

A4H: Horizontal low frequency 

A4V: Vertical Low Frequency 

H4V: horizontal high frequency 

        V4H: vertical high frequency 

        D4H: horizontal diagonal high frequency 

        D4V: vertical diagonal high frequency 

  

Tables 2 to 9 show extracted feature values by 

DWT from images of table 1. 

Table 2. Feature extraction value of T1WI_1 original image 
A4H -0.50 -0.49 -0.43 -0.21 -0.23 -0.12 0.07 0.15 0.26 0.31 0.39 0.44 0.49 0.50 0.49 0.42 

A4V -0.50 -0.47 -0.23 -0.31 -0.21 -0.07 0.05 0.14 0.19 0.28 0.37 0.38 0.37 0.43 0.48 0.50 

H4V -0.50 -0.47 -0.39 -0.25 -0.04 0.01 0.18 -0.01 -0.17 0.11 -0.23 0.15 0.17 -0.16 0.27 0.50 
V4H -0.50 -0.49 -0.43 -0.30 -0.20 -0.11 0.08 0.37 0.49 0.37 -0.08 0.35 0.19 -0.21 0.31 0.50 
D4H -0.50 -0.45 -0.22 0.06 0.50 0.27 0.06 -0.03 -0.25 -0.08 -0.12 -0.27 -0.38 -0.32 -0.24 -0.21 
D4V -0.50 -0.02 0.50 -0.06 0.00 0.02 0.09 0.22 0.49 0.19 -0.02 0.01 -0.12 -0.12 -0.15 -0.24 

 
Table 3. Feature extraction value of T1WI_1 segmental image 
A4H -0.50 -0.49 -0.44 -0.29 -0.38 -0.38 -0.33 -0.23 -0.06 -0.14 0.03 0.43 0.50 0.47 0.14 -0.18 
A4V -0.50 -0.47 -0.26 -0.38 -0.42 -0.43 -0.44 -0.37 -0.02 0.22 0.50 0.36 -0.02 0.28 0.48 0.47 

H4V -0.50 -0.48 -0.42 -0.40 -0.35 -0.35 -0.29 -0.17 -0.07 0.06 -0.14 0.03 -0.07 -0.19 0.50 0.12 

V4H -0.50 -0.49 -0.47 -0.41 -0.38 -0.37 -0.08 0.10 0.50 0.15 0.08 -0.15 -0.27 -0.14 0.10 0.14 
D4H -0.50 -0.42 -0.11 0.09 0.18 0.17 0.27 0.42 0.04 0.50 0.42 -0.04 0.10 0.34 0.09 -0.12 
D4V -0.50 -0.19 0.01 -0.30 -0.17 -0.12 -0.01 0.50 0.18 -0.01 0.25 -0.14 0.15 0.38 -0.04 0.39 

 
Table 4. Feature extraction value of T1WI_2 original image 
A4H -0.50 -0.50 -0.49 -0.34 -0.20 -0.13 -0.07 0.03 0.12 0.21 0.30 0.38 0.45 0.50 0.48 0.35 

A4V -0.50 -0.49 -0.33 -0.09 -0.19 -0.12 0.04 0.12 0.23 0.39 0.34 0.39 0.50 0.44 0.50 0.50 

H4V -0.50 -0.49 -0.43 -0.33 -0.21 -0.22 -0.10 -0.13 -0.23 0.50 -0.06 0.00 -0.28 0.28 0.46 -0.14 

V4H -0.50 -0.50 -0.47 -0.41 -0.20 -0.37 -0.06 -0.20 -0.11 -0.20 0.03 0.15 -0.05 0.10 0.50 0.23 

D4H -0.50 -0.48 -0.39 -0.06 0.16 0.20 0.50 0.22 0.13 0.03 -0.04 -0.10 -0.27 -0.16 -0.24 -0.26 

D4V -0.50 -0.45 -0.05 0.00 0.21 0.45 0.50 0.36 0.27 -0.05 -0.22 0.13 0.00 -0.05 0.17 -0.07 

 
Table 5. Feature extraction value of T1WI_2 segmental image 



A4H -0.50 -0.50 -0.48 -0.34 -0.32 -0.30 -0.22 -0.12 -0.07 0.09 0.24 0.39 0.43 0.50 0.50 0.18 
A4V -0.50 -0.48 -0.38 -0.21 -0.33 -0.36 -0.21 -0.08 0.05 0.26 0.18 0.30 0.50 0.27 0.42 0.39 
H4V -0.50 -0.49 -0.42 -0.33 -0.23 -0.15 -0.14 0.12 0.09 0.34 0.04 0.06 -0.20 0.10 0.50 0.15 
V4H -0.50 -0.50 -0.48 -0.42 -0.19 -0.32 -0.03 -0.03 0.21 0.48 0.08 0.42 -0.13 0.14 0.50 0.43 
D4H -0.50 -0.49 -0.42 0.01 0.12 0.12 0.50 0.15 0.43 0.29 0.41 0.28 -0.25 0.08 0.08 0.23 
D4V -0.50 -0.47 -0.23 -0.18 0.04 0.21 0.49 0.50 0.28 0.13 -0.14 0.24 -0.14 0.03 0.25 -0.11 

 
Table 6. Feature extraction value of T2WI_1 original image 
A4H -0.50 -0.50 -0.50 -0.48 -0.33 -0.27 -0.16 0.05 0.40 0.50 0.36 0.38 0.41 0.35 0.36 0.33 

A4V -0.50 -0.50 -0.41 -0.29 -0.17 -0.03 0.04 0.09 0.16 0.08 0.05 0.16 0.40 0.50 0.41 0.36 

H4V -0.50 -0.49 -0.38 -0.32 -0.09 -0.01 0.11 0.19 0.26 0.10 0.34 0.47 0.33 0.44 0.44 0.50 

V4H -0.50 -0.50 -0.50 -0.47 -0.31 -0.18 -0.15 -0.26 -0.06 0.11 0.33 0.50 0.31 0.26 0.25 0.41 

D4H -0.50 -0.50 -0.49 -0.33 -0.20 0.17 0.21 -0.01 0.49 0.50 -0.03 -0.05 -0.18 -0.07 -0.09 0.15 
D4V -0.50 -0.41 -0.29 -0.19 -0.05 0.13 0.11 0.50 0.07 -0.17 0.04 0.42 0.31 -0.14 -0.19 -0.19 

 
Table 7. Feature extraction value of T2WI_1 segmental image 
A4H -0.50 -0.50 -0.50 -0.49 -0.35 -0.34 -0.22 0.09 0.50 0.38 0.22 -0.01 -0.05 -0.36 -0.14 -0.05 
A4V -0.50 -0.49 -0.44 -0.37 -0.29 -0.04 -0.12 -0.17 0.00 -0.28 -0.20 0.05 0.45 0.50 0.32 0.35 

H4V -0.50 -0.48 -0.29 -0.29 0.01 0.01 -0.14 0.11 0.26 -0.09 0.36 0.50 0.41 0.29 0.18 0.32 
V4H -0.50 -0.50 -0.50 -0.47 -0.31 -0.31 -0.31 -0.30 -0.23 -0.11 0.44 0.50 0.26 -0.13 0.00 0.08 
D4H -0.50 -0.50 -0.50 -0.35 -0.25 0.13 -0.07 -0.02 0.34 0.50 0.30 0.47 0.03 -0.09 -0.19 0.23 
D4V -0.50 -0.40 -0.35 -0.20 -0.13 -0.08 -0.11 0.50 0.05 -0.12 0.13 0.34 0.10 -0.08 -0.12 -0.16 

 
Table 8. Feature extraction value of T2WI_2 original image 
A4H -0.50 -0.50 -0.50 -0.46 -0.27 -0.26 -0.20 0.13 0.32 0.24 0.33 0.31 0.32 0.29 0.37 0.50 
A4V -0.50 -0.50 -0.48 -0.26 -0.02 0.21 0.24 0.21 0.23 0.30 0.31 0.29 0.50 0.47 0.38 0.45 
H4V -0.50 -0.49 -0.45 -0.41 -0.30 -0.03 0.01 0.07 0.19 -0.07 0.25 0.18 0.50 0.26 0.11 0.38 
V4H -0.50 -0.50 -0.50 -0.45 -0.37 -0.36 -0.27 0.02 0.50 0.37 0.04 0.17 0.32 0.02 0.34 0.37 

D4H -0.50 -0.48 -0.40 -0.15 -0.11 0.47 0.50 0.35 0.16 0.44 0.39 -0.01 -0.01 -0.04 0.24 0.27 

D4V -0.50 -0.45 -0.30 -0.18 0.50 0.40 -0.04 0.18 0.04 -0.18 -0.15 0.16 0.08 -0.01 0.10 0.18 

   
Table 9. Feature extraction value of T2WI_2 segmental image 
A4H -0.50 -0.50 -0.50 -0.44 -0.13 -0.22 -0.14 0.33 0.50 0.15 0.16 -0.04 0.02 -0.04 0.18 0.36 

A4V -0.50 -0.50 -0.44 -0.13 0.26 0.35 0.24 0.08 0.01 0.06 -0.07 -0.02 0.50 0.37 -0.06 0.08 
H4V -0.50 -0.49 -0.45 -0.36 -0.20 0.13 0.01 0.12 0.09 -0.09 0.07 0.29 0.45 0.30 0.24 0.50 
V4H -0.50 -0.50 -0.49 -0.42 -0.36 -0.37 -0.27 -0.12 0.50 0.17 0.12 0.17 0.10 -0.08 0.32 0.16 
D4H -0.50 -0.50 -0.42 -0.17 -0.21 0.13 0.09 0.39 -0.07 0.29 0.50 -0.06 -0.10 -0.07 0.00 0.07 
D4V -0.50 -0.43 -0.13 0.01 0.36 0.50 0.25 0.19 -0.20 0.00 -0.02 0.08 0.09 0.14 0.15 0.16 

 

3. Training of Neural Network 

Deep learning neural network models learning 

to map inputs to outputs given a training dataset 

of experiments. The training process involves 

finding a set of weights in the network that 

proves to be good, or good enough, at solving 

the specific problem. This training process is 

iterative, meaning that it progresses step by step 

with small updates to the model weights each 

iteration and, in turn, a change in the 

performance of the model each iteration. The 

iterative training process of neural networks 

solves an optimization problem that finds for 

parameters that result in a minimum error or 

loss when evaluating the examples in the 

training dataset. In pattern recognition problems, 

we want a neural network to classify inputs into 

a set of target categories. The neural pattern 

recognition will help you select data, create and 

train a network, and evaluate its performance 

using cross-entropy and confusion matrices. 

Figure 6 shows the standard NARX(Nonlinear 

Autoregressive with External Input) network 

implemented for the experiment. The standard 

NARX(Nonlinear Autoregressive with External 

Input) network is a two-layer feedforward 

network with sigmoid transfer functions in the 

hidden layer and linear transfer functions in the 

output layer. The network also uses tap delay 

lines to store the previous values of the x (t) and 



y (t) sequences. y(t) As a function of y(t – 1), y(t 

– 2), ..., y(t – d), the output y(t) of the NARX 

network is fed back to the network input via 

delay. However, we can open this feedback loop 

for efficient training. Since true outputs are 

available during network training, the open-loop 

architecture above uses the actual outputs 

instead of feeding back the expected outputs. 

This has two advantages. The first is that the 

input to the feedforward network is more 

accurate. The second is that the resulting 

network has a pure feedforward architecture, so 

more efficient algorithms can be used for 

training. The default number of hidden neurons 

is set to 10. The default number of delays is two. 

 

Figure 6. The neural network diagram 

(1) Result of training to T1WI 

We input the feature values extracted from two 

different T1-weighted original images into the 

neural network and trained them. The results of 

the training are shown in Figure 7. 

 

Figure 7. Regression of T1WI Original image 

Figure 8 shows the results of training from the 

feature values extracted from two different T1 

weighted segmented images into the neural network. 

 

Figure 8. Regression of T1WI segmental image 

(2) Result of training to T2WI  

Figure 9 shows the results of training from the 

feature values extracted from two different T2 

weighted original images into the neural network. 



 

Figure 9. Regression of T2WI Original image 

Figure 10 shows the results of training from the 

feature values extracted from two different T2 

weighted segmental images into the neural 

network. 

 

Figure 10. Regression of T2WI segmental image 

(3) Result of training to T1WI and T2WI 

Figure 11 shows the results of training from the 

feature values extracted from two different T1 and 

T2 weighted original images into the neural network. 

 

Figure 11. Regression of T1WI and T2WI Original 

image 

Figure 12 shows the results of training from the 

feature values extracted from two different T1 and T2 

weighted segmental images into the neural network. 

 

Figure 12. Regression of T1WI and T2WI segmental 

image 

III. Results and discussion 

 To check the pattern of the extracted feature 

values, the graphs are shown in Figure 13 ~ 16. 

It can be seen that the pattern of the original 



image and the segmented image are similar.  

The similarity of patterns suggests that 

segmented images typically have shape values. 

Therefore, if the shape value of the segmented 

image is used as the input value of the neural 

network, the learning time will be shortened and 

the accuracy of the learning result will be 

increased.[26] 

 

(a)
 

Originally 

 

(b)
 

Segmented 

Figure 13. Feature graph of T1WI_1 Image 

   

(a)
 

Originally 

 
(b)

 
Segmented 

Figure 14. Feature graph of T1WI_2 Image 

   
(a)

 
Originally 

 
(b)

 
Segmented 

Figure 15. Feature graph of T2WI_1 Image 

   
(a)

 
Originally 



 
(b)

 
Segmented 

Figure 16. Feature graph of T2WI_2 Image 

To evaluate the similarity between two images, 

the neural network was trained as follows input 

data : (1) Pair of T1 weighted original image, (2) 

Pair of T1 weighted segmental image, (3) Pair 

of T2 weighted original image, (4) Pair of T2 

weighted segmental image, (5) T1 and T2 

weighted original image, (6) T1 and T2 

weighted segmental image. Figure 17 shows R 

values corresponding to training, validation, test, 

and all. 

 

Figure 17. R-value of after running the neural 

network  

Figure 17 shows R-values corresponding to 

training, validation, test, and all. In Figure 17, it 

can be seen that the R-value of the segmented 

image is closer to 1 than the original image. The 

reason for this is that the image obtained by 

segment the region of the weighted portion 

already has similarities. Also, it can be seen that 

the similarity between the T1 and T2 weighted 

images is high in the same combination, and 

that the similarity is relatively low in the 

different weighted images. If we improve the 

learning result of the neural network and use the 

result of this study, we can classify the magnetic 

resonance image automatically.  

IV. Conclusion 

In this study, we proposed a method to 

automatically classify MRI images by neural 

network learning. To this end, we segmented the 

weighting domain of MRI. In feature extraction, 

the original image and segmented image were 

extracted by DWT, respectively. A neural 

network was trained by inputting extracted 

feature values.  

As a result of the experiment, it was found that 

the R-value of the segmented image is closer to 

1 than the original image. The reason is that the 

images obtained by segmenting the areas of the 

weighted parts already have similarities. Also, it 

was found that the similarity between T1 and T2 

weighted images is high in the same 

combination, and the similarity is relatively low 

in different weighted images. Improving the 

learning results of neural networks and using 

this study will be able to automatically classify 

MR images.  

Artificial intelligence must break down barriers 

to be widely accepted and reliable in 

mainstream medical imaging environments. 

This is because validation studies are needed to 

demonstrate the performance of deep learning 

algorithms in clinical environments.  



The most important issue in medical imaging is 

ensuring the confidence of radiologists using 

artificial intelligence. To solve this problem, it is 

of utmost importance that the algorithm 

developer and radiological technologist work 

together to provide a solution that is integrated 

with the radiologist's workflow.
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Abstract-  This study aimed to extract optimized 

feature parameters for PET-MRI fusion imaging, a 

state-of-the-art medical imaging technique that has 

been the focus of much recent research. The medical 

images obtained from this technique are 

characterized by high resolution and low exposure 

dose.  
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A neural network was trained by inputting extracted 

feature values.  As a result of the experiment, it was 

found that the R-value of the segmented image is 

closer to 1 than the original image. The reason is that 

the images obtained by segmenting the areas of the 

weighted parts already have similarities. Also, it was 

found that the similarity between T1 and T2 

weighted images is high in the same combination, 

and the similarity is relatively low in different 

weighted images. The most important issue in 

medical imaging is ensuring the confidence of 

radiologists using artificial intelligence. To solve this 

problem, it is of utmost importance that the algorithm 

developer and radiological technologist work 

together to provide a solution that is integrated with 

the radiologist's workflow. 

Key word: MRI, Image Processing, Discrete 
Wavelet Transform, Segmentation 

I.  Introduction 

Noninvasive imaging at the molecular level is an 

emerging field in biomedical research. PET-MRI 

fusion image is a new technology synergizing two 

leading imaging methodologies: positron emission 

tomography (PET) and magnetic resonance imaging 

(MRI). Although the value of PET lies in its high-

sensitivity tracking of biomarkers in vivo, it lacks 



resolving morphology.  MRI has lower sensitivity, 

but produces high soft-tissue contrast and provides 

spectroscopic information and functional MRI 

(fMRI). PET-MRI provides a powerful tool for 

 studying biology and pathology in preclinical 

research and has great potential for clinical 

applications. Combining fMRI and spectroscopy with 

PET paves the way for a new perspective in 

molecular imaging.[1]  With the increasing use of 

direct digital imaging systems for medical 

diagnostics, digital image processing becomes more 

and more important in health care. In addition to 

originally digital methods, such as Computed 

Tomography (CT) or Magnetic Resonance Imaging 

(MRI), initially analog imaging modalities such as 

endoscopy or radiography are nowadays equipped 

with digital sensors. Digital images are composed of 

individual pixels, to which discrete brightness or 

color values are assigned.  They can be efficiently 

processed, objectively evaluated, and made available 

at many places at the same time by means of 

appropriate communication networks and protocols, 

such as Picture Archiving and Communication 

Systems (PACS) and the Digital Imaging and 

Communications in Medicine (DICOM) protocol, 

respectively. Based on digital imaging techniques, 

the entire spectrum of digital image processing is 

now applicable in medicine.[2] Histogram 

equalization is widely used for medical image 

processing because of its simple features and effects. 

In this paper, we enhance the image by histogram 

equalization. Brain image segmentation is one of the 

most important parts of clinical diagnostic tools. 

Brain images mostly contain noise, inhomogeneity 

and sometimes deviation. Therefore, accurate 

segmentation of brain images is a very difficult task. 

However, the process of accurate segmentation of 

these images is very important and crucial for a 

correct diagnosis by clinical tools[3]. Segmented the 

brain image by setting the appropriate threshold in 

images with various pixel values[4]. We propose a 

method of extracting optimal feature values after 

decomposing a segmented image by DWT. The 

extracted feature values may be useful for image 

analysis and treatment planning. 

II. Materials and methods 

1. Medical image processing by MATLAB 

MATLAB is a data analysis and visualization tool 

that has been designed with powerful support for 

matrices and matrix operations[5]. As well as this, 

MATLAB has excellent graphics capabilities and its 

own powerful programming language. One of the 

reasons that MATLAB has become such an important 

tool is through the use of sets of MATLAB programs 

designed to support a particular task. These sets of 

programs are called toolboxes, and the particular 

toolbox of interest to us is the image processing 

toolbox. In this paper, we used the image toolbox for 

medical image processing[5]. We shall introduce 

functions, commands, and techniques as required. A 

MATLAB function is a keyword that accepts various 

parameters and produces some sort of output: for 

example a matrix, a string, a graph or figure[5]. 

Examples of such functions are sin, imread, imclose.  

There are many functions in MATLAB, it is very 

easy to write our own. MATLAB, we can combine 

functions and commands, or put multiple commands 

on a single input line. MATLAB’s standard data type 

is the matrix—all data are considered to be matrices 

of some sort. Images, of course, are matrices whose 

elements are the grey values of its pixels[6]. It is 

single values are considered by MATLAB to be 1 X 

1matrices, while a string is merely a 1 x n matrix of 

characters. 



2. Image segmentation 

In digital image processing, image segmentation is 

the process of dividing a digital image into segments. 

The goal of segmentation is to simplify or change the 

representation of the image to something more 

meaningful and easier to analyze.[7][8]  Image 

segmentation is commonly used to find objects and 

boundaries (lines, curves, etc.) in an image. More 

precisely, image segmentation is the process of 

assigning a label to every pixel in an image so that 

pixels with the same label share specific 

characteristics. The result of the image segmentation 

is a set of segments that collectively covered with a 

set of contours extracted from the whole image or the 

image.[9][10] Each pixel in the area is similar in 

terms of some characteristics or calculated properties, 

such as intensity. The adjacent region varies 

considerably concerning for the same 

characteristics.[11] The simplest method of image 

segmentation is called the threshold method. This 

method converts grayscale images to binary images 

based on the clip level.  The key to this method is to 

choose a threshold. In this paper, we segmented the 

image in the following way; 

BW= imsegfmm(W,mask,thresh) 

BW=imsegfmm(W,mask,thresh) returns a segmented 

image BW, which is computed using the Fast 

Marching Method. The array W specifies weights for 

each pixel. mask is a logical array that specifies seed 

locations. thresh is a non-negative scalar in the range 

[0 1] that specifies the threshold level. 

3. Discrete Wavelet Transform(DWT) 

Wavelet transform was proposed in the mid-

1980s, and it has been used in various fields such 

as signal processing, image processing, computer 

vision, image compression, biochemistry medicine, 

etc.[12] For image processing, it provides an 

extremely flexible multi-resolution image and can 

decompose an original image into different 

subband images including low- and high-

frequencies. Therefore people can choose the 

specific resolution data or subband images upon 

their demands.[13]  A 2-D DWT of an image is 

illustrated in Figure 3(a). When the original image 

is decomposed into four-subband images, it has to 

deal with row and column directions separately. 

First, the high-pass filter G and the low-pass filter 

H are exploited for each row data, and then are 

down-sampled by 2 to get high- and low-

frequency components of the row. Next, the high- 

and the low-pass filters are applied again for each 

high- and low-frequency components of the 

column, and then are down-sampled by 2.[14] By 

way of the above processing, the four-subband 

images are generated: HH, HL, LH, and LL. Each 

subband image has its feature, such as the low-

frequency information is preserved in the LL-band 

and the high-frequency information is almost 

preserved in the HH-, HL-, and LH-bands. The 

LL-subband image can be further decomposed in 

the same way for the second level subband 

image.[15] By using 2-D DWT, an image can be 

decomposed into any level of subband images, as 

shown in Figure 3(b). 

 

Figure 1. Diagrams of DWT image decomposition: (a) 

the 1-L 2-D analysis DWT image decomposition 

process, (b) the 2-L 2-D analysis DWT subband.[11] 



4. Neural Networks 

Artificial intelligence (AI) has led to many medical 

advancements, from AI-based software for the 

management of medical records to diagnosing and 

recognizing conditions.[16] Most of the new work on 

artificial intelligence in the medical field is related to 

diagnostic technology, and AI systems are trained to 

recognize the characteristics of various 

conditions.[17][18] Through ‘machine learning’ (ML), 

AI provides techniques that uncover complex 

associations that cannot easily be reduced to an 

equation.[19] For example, neural networks represent 

data through vast numbers of interconnected neurons 

in a similar fashion to the human brain.  This allows 

ML systems to approach complex problem solving 

just as a clinician might by carefully weighing 

evidence to reach reasoned conclusions.[20] However, 

unlike a single clinician, these systems can 

simultaneously observe and rapidly process an 

almost limitless number of inputs. Furthermore, these 

systems can learn from each incremental case and 

can be exposed, within minutes, to more cases than a 

clinician could see in many lifetimes. Artificial 

intelligence complements the vast number of digital 

images created in hospitals, the products of next-

generation imaging scanners, especially hybrids that 

include MRI, CT, PET, and SPECT. In recent years, 

machine learning algorithms are rapidly being used 

in medical image analysis.[21][22] These machine 

learning techniques are used to extract compact 

information to improve the performance of medical 

image analysis. Recently, deep learning methods 

using deep convolutional neural networks have been 

applied to medical image analysis to provide 

promising results.[21][22] The neural network model is 

shown in Figure 2 below.  

 

Figure 2. A neural network model 

Applications cover the full spectrum of medical 

image analysis, including detection, segmentation, 

classification, and computer-assisted diagnostics.[23] 

As a result, if artificial intelligence and healthcare 

professionals interact to accommodate deep thinking 

platforms, such as automation, in diagnosing a 

patient's disease state, artificial intelligence will play 

an important role in the analysis of medical image 

data, which will only be feasible.[24][25]  

I.  Experiments and results 

Digital image processing is the use of computer 

algorithms to perform image processing on digital 

images. As a subfield of digital signal processing, 

digital image processing has many advantages over 

analog image processing. It allows a much wider 

range of algorithms to be applied to the input data.  

The aim of digital image processing is to improve the 

image data by suppressing unwanted distortions and 

enhancement of some important image features so 

that our AI-Computer Vision models can benefit 

from this improved data to work on. For the 

experiment, we acquired brain tumor MRI from The 

Cancer Imaging Archive site. The image was 

preprocessed to 256 x 256 pixels for segmentation 

and stored in a bitmap format. The stored images 

were segmented with 127 ~ 200 as the threshold. Six 

parameters per image were extracted from the 

segmented image using DWT. We learned neural 

networks by inputting extracted parameters into the 

neural networks. Figure 5 is a flow chart showing the 

whole process of the experiment. 



 

Figure 2. Experiment Flowchart 

 

Table 1. Image segment and edge 

 Original Segment Edge 

 

Image1 

    

 

Image2 
   

 

Image3 
   

 

Image4 
   

 

 

1. Segmentation by MATLAB Program 

In medical image segmentation, thresholding is a 

simple, yet effective, way of partitioning an image 

into a lesion and other regions. This image analysis 

technique is a type of image segmentation that 

isolates objects by converting grayscale images into 

binary images. In this study, we segmented four brain 

tumor MRI images (images 1 to 4). The segmented 

results are shown in Table 1. 

 

2. Feature Extraction by DWT 

We performed a program using MATLAB Tool Box 

to extract brain tumor MRI features. The six 

parameters for feature extraction are horizontal low 

frequency (A4H), vertical low frequency (A4V), 

horizontal high frequency (H4V), vertical high 

frequency (V4H), horizontal diagonal high frequency 

(D4H), and vertical diagonal high frequency (D4V). 

A total of 96 features were extracted by extracting 16 

feature values for each parameter. Table 2 shows the 

meanings and abbreviations of the feature parameters 

of the coefficient matrix. 

Table 2. Feature parameters of the coefficient matrix. 

Abbreviation Feature extraction parameter  

A4H Horizontal low frequency 

A4V Vertical low frequency 

H4V Horizontal high frequency 

V4H Vertical high frequency 

D4H Diagonal High frequency (horizontal) 

D4V Diagonal High frequency (vertical) 

  



Tables 3 to 10 show the segmented parameter display 

and the characteristic values of the original image 

and the segmented image as graphs. It was confirmed 

that the slope change of the graph was large in the 

feature value of the segmented image. The reason for 

this is that the part corresponding to the background 

part of the image is removed during the segmentation 

process and the part with the lesions has a high 

frequency. 

 

 

Table 3. Feature extraction value of MRI_Brain_Tumor1_Seg.pgm image 
A4H -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.4 -0.26 -0.4 -0.3 -0.33 0.43 0.5 -0.49 -0.45 -0.09 
A4V -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.48 -0.5 -0.5 -0.47 -0.39 -0.5 -0.46 0.5 
H4V -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.48 -0.39 -0.5 -0.48 -0.45 -0.31 -0.5 -0.42 0.5 
V4H -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.47 -0.46 -0.39 -0.3 -0.39 0.12 0.5 -0.49 -0.49 -0.4 
D4H -0.5 -0.5 -0.5 -0.5 -0.5 -0.4 -0.24 -0.37 0.5 -0.3 -0.04 -0.03 0.37 -0.49 -0.35 -0.18 
D4V -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.47 -0.49 -0.5 -0.5 -0.43 -0.48 -0.5 -0.37 0.5 

 

Table 4. Feature Extraction in brain MRI tumor1 image. 
 Originally Segmentation 

Exam. Image 

  
Feature Extract. 

  
 

Table 5. Feature extraction value of MRI_Brain_Tumor2_Seg.pgm image 
A4H -0.5 -0.5 -0.5 -0.5 -0.50 -0.4 -0.2 -0.05 -0.02 0.27 0.43 0.48 0.50 0.50 0.48 0.3 
A4V -0.5 -0.5 -0.5 -0.5 -0.50 -0.5 -0.5 -0.50 -0.50 -0.50 -0.50 -0.50 -0.47 0.08 0.48 0.5 
H4V -0.5 -0.5 -0.5 -0.5 -0.50 -0.5 -0.5 -0.50 -0.50 -0.50 -0.50 -0.49 -0.42 -0.09 -0.09 0.5 
V4H -0.5 -0.5 -0.5 -0.5 -0.49 -0.4 0.01 0.11 -0.01 0.50 -0.16 -0.26 -0.16 -0.15 -0.39 0.3 
D4H -0.5 -0.5 -0.5 -0.5 -0.44 0.3 0.5 0.23 0.16 0.20 -0.39 -0.40 -0.49 -0.44 0.14 0.3 
D4V -0.5 -0.5 -0.5 -0.5 -0.50 -0.5 -0.5 -0.50 -0.50 -0.50 -0.50 -0.48 -0.06 0.50 -0.36 -0.3 

 

Table 6. Feature Extraction in brain MRI tumor2 image. 
 Originally Segmentation 
Exam. Image 

  
Feature Extract. 

  
 



Table 7. Feature extraction value of MRI_Brain_Tumor3_Seg.pgm image 
A4H -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.45 -0.04 0.5 
A4V -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.46 -0.12 0.21 0.5 0.5 
H4V -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.49 -0.47 -0.09 0.5 0.3 -0.05 
V4H -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.48 -0.36 0.27 0.5 
D4H -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.42 0.5 0.15 0.01 
D4V -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.43 -0.05 0.47 0.33 0.5 0.11 

 

Table 8. Feature Extraction in brain MRI tumor3 image. 
 Originally Segmentation 

Exam. Image 

  
Feature Extract. 

  
 

Table 9. Feature extraction value of MRI_Brain_Tumor4_Seg.pgm image 
A4H -0.5 -0.5 -0.5 -0.5 -0.5 -0.49 -0.08 0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 
A4V -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.34 0.5 -0.5 -0.5 
H4V -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.34 0.5 -0.5 -0.5 
V4H -0.5 -0.5 -0.5 -0.5 -0.5 -0.49 -0.08 0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 
D4H -0.5 -0.5 -0.5 -0.5 -0.5 -0.49 0.5 -0.35 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 
D4V -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.06 -0.5 -0.5 

 

Table 10. Feature Extraction in brain MRI tumor4 image. 
 Originally Segmentation 

Exam. Image 

  
Feature Extract. 

  
 

3. Self-organizing map using NN

A self-organizing map (SOM) consists of a 
competitive layer that can classify a dataset of 
vectors with any number of dimensions into as many 
classes as the layer has neurons. The neurons are 
arranged in a 2D topology, which allows the layer to 
form a representation of the distribution and a two-
dimensional approximation of the topology of the 

dataset. Self-organizing maps learn to cluster data 
based on similarity, topology, with a preference of 
assigning the same number of instances to each class. 
Self-organizing maps are used both to cluster data 
and to reduce the dimensionality of data. Tables 11 to 
14 show original and segmented images of self-
organizing maps of four brain tumor MRIs, 



respectively. The self-organizing maps in each table 
represent Neighbor Weight Distances, Neural 
Networks Training self-organizing map Input Planes, 

and Neural Networks Training self-organizing map 
Sample Hits. 

 

Table 11. Self-organizing map of brain MRI tumor1 
image 

 Originally Segmentation 
Exam. 
Image 

  
SOM 

Neighbor 
Weight 

Distances 

  
NN 

Training 
SOM 
Input 
Planes 

 
NN 

Training 
SOM 

Sample 
Hits 

 
 

 

Table 12. Self-organizing map of brain MRI tumor2 
image 

 Originally Segmentation 
Exam. 
 Image 

  
SOM 

Neighbor 
Weight 

Distances 

  
NN 

Training 
SOM 
Input 
Planes 

  
NN 

Training 
SOM 

Sample 
Hits 

  
 
 

Table 13. Self-organizing map of brain MRI tumor3 
image 

 Originally Segmentation 
Exam. 
 Image 

  
SOM 

Neighbor 
Weight 

Distances 

  
NN 

Training 
SOM 
Input 
Planes 

  
NN 

Training 
SOM 

Sample 
Hits 

  
 

 

Table 14. Self-organizing map of brain MRI tumor4 
image 

 Originally Segmentation 
Exam. 
 Image 

  
SOM 

Neighbor 
Weight 

Distances 

  
NN 

Training 
SOM 
Input 
Planes 

  
NN 

Training 
SOM 

Sample 
Hits 

  

 



IV. Conclusion 

In this study, we proposed a method of segmenting 
tumor lesions and extracting optimal feature 
parameters from brain tumor MRI.  To this end, 
brain tumor images were segmented and edge was 
detected at the segment. The detected edge becomes 
the exact region of interest of the brain tumor lesion. 
The segmentation image was decomposed by DWT 
and 96 features were extracted with 6 variables. To 
evaluate the extracted feature values, we compared 
the extracted feature values with the values of the 
original image. As a result of the comparison, the 
patterns of change were similar, and the extracted 
feature values were found to be largely changed at a 
specific portion. Also, the neural network identified 
the self-organizing map(SOM) Neighbor Weight 
Distances, Neural Networks Training self-organizing 
map(SOM) Input Planes, and Neural Networks 
Training self-organizing map(SOM) Sample Hits.  
As a result, the deviation of the pixel neighbor values 
in the segmented image was large. Perhaps, the 
reason is that it contains feature values. If the feature 
extraction method proposed in this study is used, it 
will be able to be used for disease recognition by AI 
and automatic diagnosis of medical images.  
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