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Abstract Simultaneous MR-PET imaging is a fusion 
of MRI using various parameters and PET images 
using various nuclides. In this paper, we performed 
analysis on the fitting degree between MRI and 
simultaneous MR-PET images and between PET and 
simultaneous MR-PET images. For the fitness analysis 
by neural network learning, feature parameters of 
experimental images were extracted by discrete wavelet 
transform (DWT), and the extracted parameters were used 
as input data to the neural network. In comparing the 
feature values extracted by DWT for each image, the 
horizontal and vertical low frequencies showed similar 
patterns, but the patterns were different in the horizontal 
and vertical high frequency and diagonal high frequency 
regions. In particular, the signal value was large in the 
T1 and T2 weighted images of MRI. Neural network 
learning results for fitting degree analysis were as follows. 
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1. T1-weighted MRI and simultaneous MR-PET image 
fitting degree: Regression (R) values were found to be 
Training 0.984, Validation 0.844, and Testing 0.886. 
2. Dementia-PET image and Simultaneous MR-PET Image 
fitting degree: R values were found to be Training 0.970, 
Validation 0.803, and Testing 0.828. 
3. T2-weighted MRI and concurrent MR-PET image fitting 
degree: R values were found to be Training 0.999, 
Validation 0.908, and Testing 0.766. 
4. Brain tumor-PET image and Simultaneous MR-PET 
image fitting degree: R values were found to be Training 
0.999, Validation 0.983, and Testing 0.876. 
 
An R value closer to 1 indicates more similarity. Therefore, 
each image fused in the simultaneous MR-PET images 
verified in this study was found to be similar. Ongoing 
study of images acquired with pulse sequences other than 
the weighted images in the MRI is needed. These studies 
may establish a useful protocol for the acquisition of 
simultaneous MR-PET images. 
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I. Introduction 

The discovery of x-rays provided a way to see 
inside the human body for the first time in 
history and has been an opportunity for the 



development of modern medicine [1]. In the late 
20th century, advanced imaging techniques such 
as computed tomography (CT), magnetic 
resonance imaging (MRI), and positron emission 
tomography (PET) were developed by grafting 
computer technology to medical imaging 
equipment. These medical imaging devices 
enable evaluation of the anatomy and 
physiological characteristics of the human body 
and can express these characteristics in 3D high 
resolution [2]. The simultaneous MR-PET 
examination can obtain images of higher soft 
tissue contrast while exposing the patient to less 
radiation compared with the PET-CT 
examination. The reason is that 70% of radiation 
exposure in PET/CT scans is from CT, and MRI 
has higher soft tissue contrast than CT [3]. 
Therefore, simultaneous MR-PET testing is 
advantageous for testing patients of reproductive 
age, children, and pregnant women [3]. 
Simultaneous MR-PET acquires an image in one 
session and completely registers anatomical and 
functional information. In contrast, sequential 
PET-MRI may cause resampling and registration 
errors between the PET scan and the MRI scan 
by sequentially performing two scans. In 
addition, the sequential PET-MRI examination 
increases the examination time, causing 
inconvenience to the patient. From a technical 
point of view, patient motion is a major problem 
with whole-body PET scans and affects image 
quality and quantification [3]. Simultaneous 
MR-PET scans are integrated into the modeling 
and PET reconstruction process to provide 
accurate motion measurements that can produce 
motion-free PET images [3].  

In this paper, we evaluated whether the fusion 
image acquired by simultaneous MR-PET was 
properly mapped (fitting degree) to the 
characteristics of the PET image and the 
characteristics of the MRI. In the evaluation, 
after segmenting the experimental image, 
features were extracted by DWT, and the 
extracted feature values were used as input 
signals to the neural network to be evaluated by 
machine learning. 

II. Materials and Methods 

1. Simultaneous MR-PET images 

Simultaneous MR-PET is a method that can 
simultaneously perform PET using 
radiopharmaceuticals that emit positrons and MRI 
using superconducting magnets and radio high 
frequency [7]. Simultaneous MR-PET is a fusion 
molecular imaging system that combines PET that 
shows ultra-sensitive molecular images and MRI 
capable of high-resolution functional imaging. It has 
the advantages of improved diagnostic accuracy 
compared with xxxx, aids in developing new imaging 
biomarkers and new drugs, reduced radiation 
exposure, and improved patient convenience [7]. 
Compared with PET-CT, PET-MRI exposes patients 
to less radiation (up to 70% of the dose received from 
PET-CT scans is due to CT) and has a higher contrast 
for soft tissue [5]. Since simultaneous MR-PET is an 
all-in-one device, it acquires two examinations at the 
same time, reducing the examination time by almost 
half compared with the device that acquires PET and 
MRI in sequence [7]. Therefore, the accuracy of the 
examination, patient convenience, and the 
profitability of the equipment are increased. For 
example, due to simultaneous acquisition, errors due 
to movement are minimized, thereby increasing the 
accuracy of diagnosis around a moving bowel and a 
bladder filled with urine. In simultaneous MR-PET, 
measurements can be performed in one single session, 
but separate scanners have to adjust the two 
examinations, which further affects the overall 
examination time and patient comfort [7]. 
Simultaneous MR-PET can provide complete 
registration with anatomical and functional 
information, but sequential PET-MRI can cause 
errors due to resampling and registration between 
PET and MRI images. Simultaneous MRI scans are 
integrated into the modeling and PET reconstruction 
process to provide accurate motion measurements 
that can produce motion-free PET images [7]. PET 
also provides quantitative functional information as 
long as certain data modifications, such as 
attenuation and scattering of γ photons in patient 
tissue, are applied correctly. CT provides contrast 
information for X-ray absorption based on the 
electron density of the tissue, whereas MRI provides 
contrast information for the proton density of tissue 
[8]. Other strategies for converting proton density to 
electron density in specific cases of brain PET have 
been studied [9]. 

The combination of PET and MRI requires 
significant advances in the software that supports the 



measurement of signals such as the influence of the 
magnetic field by the superconducting magnet of the 
MRI, attenuation and motion compensation, and 

design errors in the new RF coil on the PET 
amplification device [7]. 

 

Figure 1. Simultaneous MR-PET diagram and images[4] 

 

 

2. Feature extraction of simultaneous 

MR-PET images by discrete wavelet 

transform (DWT) 

Wavelet transforms can construct a model of a 
signal, system, or process into a specific set of 
signals [10]. This special signal is called a wavelet, 
and it is expressed as an arbitrary waveform through 
a localized small wavelet as a pattern and is 
transformed, enlarged, or reduced. The characteristic 
of time-frequency analysis by wavelet transformation 

is that the time resolution is high in the high-
frequency domain and the frequency resolution is 
high in the low-frequency domain [10]. The two-
dimensional wavelet decomposition algorithm of the 
image works similarly to the one-dimensional case. 
The two-dimensional wavelet and scaling function 
are obtained by taking the tensor product and scaling 
function of the one-dimensional wavelet.  

 This kind of two-dimensional DWT decomposes 
the approximation coefficient at level j into four 
components, the approximation at level j + 1 and the 
detail in three directions (horizontal, vertical, and 
diagonal) [10]. [Figure 2] explains the decomposition 
step [11]. 

 

 — Down sample columns: keep the even indexed columns 

 — Down sample rows: keep the even indexed rows 

 — Convolve with filter X the rows of the entry 

 — Convolve with filter X the columns of the entry 

Figure 2. Decomposition step of the image by DWT[11] 

 



 

3. Self-organizing maps (SOM) 

The feature mapping of the structure of a self-
organizing neural network is the transformation of 
input patterns of any dimension into outputs of 
neurons composed of a one-dimensional or two-
dimensional array. The neural network that performs 
these ideas is called a feature map [12]. In addition to 
dimensional reduction, feature maps also have 
features that preserve topology. That is, input 

patterns that are close to each other activate output 
units that are close to each other in the feature map. 
This is also an important feature of feature maps 
found in the cerebral cortex of developed animals 
[12]. SOM is generally composed of a one-
dimensional or two-dimensional array of units, and 
each unit is connected to all n input nodes. If the n-
dimensional vector of the unit in (i, j) is wij, each 
neuron calculates the Euclidean distance between the 
input vector and the stored connection strength 
vector wij [12][13]. 

 
 

 

(a) SOM neural network structure 

 

(b) SOM feature Map 

Figure 3. Self-Organizing Maps (SOM)[12][13] 

   

III. Experimental Results and Discussion 

The experiment was performed following the 
experimental concept diagram in [Figure 4]. The 
fitting degree of the MR and PET images of the 
simultaneous MR-PET image of (2) acquired with 
the equipment (1) in [Figure 4] was analyzed. In step 
(3), each image (MRI, PET, simultaneous MR-PET 

image) for the experiment was subjected to DWT. 
Low-frequency coefficient matrix 6 X 16 feature 
parameters were extracted with the 3-step DWT. The 
extracted parameters were input to the SOM neural 
network configured in (4) and the result was obtained 
in (5). 

  



 

Figure 4. Experimental procedure  

 

1. Image acquisition and preprocessing 

Figure 5 and Figure 6 show the medical images 
used in the experiment. The experimental image was 
adjusted to 256 X 256 pixels, and the image shape 
was pre-processed in the form of a bit map (*.bpm). 

To extract the features of the experimental image, we 
implemented and executed the DWT program using 
Matlab R2015. The experiment was conducted with 
the SOM neural network using the extracted features 
as input. 

 
 

A. T1-weighted MRI and Dementia PET fusion image 

 

(a) Fusion Image 

 

(b) T1-weighted MRI 

 

(c) Dementia PET Image 

Figure 5. T1-weighted MRI and Dementia PET fusion images 

 
B. T2-weighted MRI and brain tumor PET fusion image 

 

(a) Fusion Image 

 

(b) T2-wighted MRI 

 

Brain tumor PET Image 

Figure 6. T2-weighted MRI and brain tumor PET fusion images 



 

2. DWT 

Matlab M-Programing was performed for DWT. 
The experimental images were performed by pre-
processing the six images in Figures 5 and 6 into 256 
X 256 pixels and then segmenting the disease area.  
 

A. T1-weighted MRI (T1WI) and Dementia PET 

fusion image 

[Table 1] shows the 6 X 16 matrix feature extraction 

values obtained as a result of 3-step DWT after the 

segmentation of a simultaneous MR-PET (T1WI and 

Dementia PET fusion image) image. 

  

Table 1. Feature extraction results of Simultaneous MR-PET (T1WI and Dementia PET fusion image)  

  Features of T1-weighted MRI and Dementia PET fusion image 

A4H -0.50 -0.50 -0.50 -0.49 -0.48 -0.48 -0.18 0.15 0.29 0.35 0.40 0.42 0.47 0.49 0.50 0.50 

A4V -0.50 -0.50 -0.50 -0.49 -0.44 -0.11 0.13 0.25 0.35 0.40 0.48 0.48 0.47 0.50 0.38 0.43 

H4V -0.50 -0.50 -0.48 -0.40 -0.41 0.11 0.50 -0.07 -0.16 -0.39 -0.36 -0.44 -0.43 -0.44 -0.42 -0.45 

V4H -0.50 -0.50 -0.49 -0.25 0.50 0.01 -0.17 -0.29 -0.41 -0.42 -0.28 -0.22 -0.47 -0.37 -0.30 -0.22 

D4H -0.50 -0.50 -0.49 -0.40 -0.33 0.50 0.38 0.00 0.04 -0.40 -0.28 -0.30 -0.30 -0.41 -0.37 -0.42 

D4V -0.50 -0.50 -0.48 0.03 0.50 0.10 0.07 0.07 -0.25 -0.09 0.16 0.02 -0.44 -0.24 -0.04 0.10 

 
1) Feature extraction of T1WI 

[Table 2] shows the 6 X 16 matrix feature extraction 

values obtained as a result of 3-step DWT after the 

segmentation of T1WI. 

  

Table 2. Feature extraction results of T1-weighted MRI 

  Features of T1-weighted MRI 
A4H -0.50 -0.48 -0.28 -0.18 -0.10 -0.26 -0.12 0.06 0.14 0.14 0.24 0.29 0.39 0.47 0.50 0.34 

A4V -0.50 -0.49 -0.47 -0.45 -0.24 -0.08 0.06 0.25 0.34 0.47 0.50 0.27 0.40 0.42 0.33 0.42 

H4V -0.50 0.26 0.33 0.35 0.50 0.29 -0.05 -0.28 -0.13 -0.07 -0.09 -0.09 -0.17 -0.23 -0.09 0.17 

V4H -0.50 -0.19 0.05 0.26 0.34 0.37 0.03 0.43 -0.16 0.08 0.50 0.42 0.26 0.42 0.14 0.43 

D4H -0.50 -0.10 0.22 0.34 0.41 0.06 0.50 0.38 0.09 0.15 0.35 -0.09 -0.09 -0.14 0.27 0.20 

D4V -0.50 -0.24 0.11 0.08 0.07 0.25 -0.16 0.05 -0.30 0.11 0.12 0.50 0.07 -0.13 -0.10 0.22 

 

Each parameter (A4H, A4V, V4H, H4V, D4H, D4V) 
in [Table 1] and [Table 2] containing the feature 
extraction values obtained by DWT is shown as a 
graph. [Figure 7] shows graphs of A4H (horizontal 
low-frequency characteristics) and A4V (vertical 

low-frequency characteristics) in [Table 1] and 
[Table 2]. The results show that the characteristics of 
the vertical and horizontal low-frequency regions are 
similar.  



 

 

Figure 7. A4H (horizontal low frequency characteristics) and A4V (vertical low-frequency characteristics) graph 
in [Table 1] and [Table 2] 

[Figure 8] shows graphs of H4V (horizontal high-
frequency feature) and V4H (vertical high-frequency 
feature) in [Table 1] and [Table 2]. The 
characteristics of the vertical and horizontal high-

frequency regions are different, and the results show 
that the T1WI image contains many high-frequency 
components. 

 

  
Figure 8. H4V (horizontal high frequency characteristic) and V4H (vertical high frequency characteristic) graph 
in [Table 1] and [Table 2] 

[Figure 9] shows graphs of D4H (diagonal high-
frequency characteristics) and D4V (diagonal low-
frequency characteristics) in [Table 1] and [Table 2]. 
The characteristics of the frequency domain in the 

diagonal direction are different, and the results show 
that the T1WI image has many frequency 
components.

  

  



Figure 9. D4H (diagonal high frequency characteristics) and D4V (diagonal low frequency characteristic) 
graph in [Table 1] and [Table 2] 

 

2) Feature extraction of Dementia PET image 

[Table 3] shows the 6 X 16 matrix feature extraction 

values obtained as a result of 3-step DWT after 

segmentation of the Dementia-PET image. 

  

Table 3. Feature extraction results of Dementia PET image 

  Features of Dementia PET image 

A4H -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.46 -0.07 0.09 0.22 0.36 0.41 0.45 0.48 0.49 0.50 

A4V -0.50 -0.50 -0.50 -0.50 -0.48 -0.21 0.08 0.22 0.32 0.40 0.47 0.50 0.48 0.50 0.26 0.44 

H4V -0.50 -0.50 -0.50 -0.50 -0.50 -0.38 0.50 0.12 0.09 -0.10 -0.42 -0.40 -0.43 -0.48 -0.43 -0.48 

V4H -0.50 -0.50 -0.50 -0.44 0.49 0.37 -0.02 -0.11 -0.24 -0.42 -0.42 -0.44 -0.39 0.50 0.21 -0.29 

D4H -0.50 -0.50 -0.50 -0.50 -0.50 -0.31 0.50 -0.09 0.17 0.04 -0.26 -0.23 -0.40 -0.48 -0.35 -0.45 

D4V -0.50 -0.50 -0.50 -0.48 0.11 0.50 0.09 0.18 -0.19 0.02 -0.24 -0.38 -0.21 0.26 0.07 -0.06 

 

[Figure 10] shows graphs of A4H (horizontal low 
frequency characteristics) and A4V (vertical low 
frequency characteristics) in [Table 1] and [Table 3]. 

The results show that the characteristics of the 
vertical and horizontal low frequency regions are 
similar. 

  

Figure 10. A4H (horizontal low frequency characteristics) and A4V (vertical low-frequency characteristics) 
graph in [Table 1] and [Table 3] 

[Figure 11] is a graph showing H4V (horizontal 
high frequency characteristics) and V4H (vertical 
high frequency characteristics) in [Table 1] and 
[Table 3]. The results show that the characteristics of 

the vertical and horizontal high-frequency regions are 
different and that the Dementia-PET image has more 
high-frequency components.

  



  
Figure 11. H4V (horizontal high frequency characteristic) and V4H (vertical high frequency characteristic) 
graph in [Table 1] and [Table 3] 

[Figure 12] shows graphs of D4H (diagonal high-
frequency characteristics) and D4V (diagonal low-
frequency characteristics) in [Table 1] and [Table 3]. 

The results show that the characteristics of the 
diagonal high-frequency region are similar. 

  
Figure 12. D4H (diagonal high frequency characteristics) and D4V (diagonal low frequency characteristic) 
graph in [Table 1] and [Table 3] 

 

B. T2-weighted MRI (T2WI) and brain tumor 

PET fusion image 

[Table 4] shows the 6 X 16 matrix feature extraction 

values obtained as a result of 3-step DWT after 

segmentation of simultaneous MR-PET (T2WI and 

Brain tumor-PET fusion image) images. 

  

Table 4. Feature extraction results of Simultaneous MR-PET (T2WI and brain tumor PET fusion image) image 

Features of T2-weighted MRI and brain tumor PET fusion image 

A4H -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.47 -0.29 -0.38 -0.10 0.11 0.34 0.50 0.44 0.17 -0.29 

A4V -0.50 -0.50 -0.50 -0.49 -0.45 -0.37 -0.02 0.28 0.44 0.50 0.38 0.10 -0.36 -0.38 -0.42 -0.46 

H4V -0.50 -0.50 -0.48 -0.50 -0.50 -0.48 0.22 -0.04 0.09 -0.23 -0.33 -0.38 -0.37 0.00 0.50 0.36 

V4H -0.50 -0.50 -0.50 -0.28 0.26 0.08 0.15 -0.14 -0.05 0.12 0.50 0.45 0.10 0.17 -0.20 -0.33 

D4H -0.50 -0.50 -0.43 -0.48 -0.50 -0.47 0.41 0.45 0.28 -0.04 0.28 -0.04 -0.12 0.38 0.50 0.50 

D4V -0.50 -0.50 -0.50 -0.16 0.02 0.48 0.11 -0.14 -0.01 0.35 0.50 0.36 0.14 0.37 -0.32 -0.24 

 

1) Feature extraction of T2WI [Table 5] shows the 6 X 16 matrix feature extraction 

values obtained as a result of 3-step DWT after 



segmentation of T2WI. 

 

Table 5. Feature extraction results of T2WI 

  Features of T2-weighted MRI 
A4H -0.50 -0.49 -0.42 -0.38 -0.45 -0.35 -0.24 -0.10 0.06 0.08 0.24 0.41 0.50 0.29 0.09 -0.01 

A4V -0.50 -0.50 -0.50 -0.47 -0.29 -0.08 0.05 0.29 0.38 0.50 0.37 0.24 -0.24 -0.13 -0.26 -0.30 

H4V -0.50 -0.29 0.06 -0.30 -0.08 0.50 0.44 0.14 -0.16 -0.25 -0.28 -0.42 -0.17 -0.12 0.06 -0.03 

V4H -0.50 -0.50 -0.50 0.06 0.50 0.08 -0.19 -0.28 -0.18 0.14 -0.01 0.25 0.26 0.17 0.01 -0.37 

D4H -0.50 -0.43 -0.38 -0.23 -0.06 -0.03 0.50 0.25 -0.06 -0.08 -0.12 -0.43 -0.18 -0.22 -0.18 0.12 

D4V -0.50 -0.50 -0.49 -0.26 -0.10 0.50 0.04 0.27 0.26 0.37 0.26 0.02 0.00 0.13 0.17 0.04 

 

[Figure 13] shows graphs of A4H (horizontal low 
frequency characteristics) and A4V (vertical low 
frequency characteristics) in [Table 4] and [Table 5]. 

The results show that the characteristics of the low 
frequency region are similar. 

  
Figure 13. A4H (horizontal low frequency characteristics) and A4V (vertical low-frequency characteristics) 
graph in [Table 4] and [Table 5] 

 
[Figure 14] shows graphs of H4V (horizontal high 
frequency characteristics) and V4H (vertical high 
frequency characteristics) in [Table 4] and [Table 5]. 

The results show that the characteristics of the high-
frequency region are less than that of the low-
frequency region, but are similar. 

  
Figure 14. H4V (horizontal high frequency characteristic) and V4H (vertical high frequency characteristic) 
graph in [Table 4] and [Table 5] 

 
[Figure 15] shows graphs of D4H (diagonal high-
frequency characteristics) and D4V (diagonal low-

frequency characteristics) in [Table 4] and [Table 5]. 
The results show that the characteristics of the 



diagonal high-frequency region are less than that of the low-frequency region, but are similar.

  
Figure 15. D4H (diagonal high frequency characteristics) and D4V (diagonal low frequency characteristic) 
graph in [Table 4] and [Table 5] 

 

2) Feature extraction of brain tumor PET image 

[Table 6] shows the 6 X 16 matrix feature extraction 

values obtained as a result of 3-step DWT after 

segmentation of a brain tumor-PET image. 

 

Table 6. Feature extraction results of brain tumor PET image 

  Features of brain tumor PET image 

A4H -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.47 -0.10 0.30 0.50 0.43 0.41 0.30 -0.43 

A4V -0.50 -0.50 -0.50 -0.50 -0.50 -0.47 0.03 0.32 0.42 0.50 0.00 -0.50 -0.50 -0.50 -0.50 -0.50 

H4V -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.41 0.29 0.26 0.04 -0.36 -0.41 0.20 0.50 -0.32 

V4H -0.50 -0.50 -0.50 -0.50 -0.41 -0.18 -0.20 -0.33 -0.38 0.50 0.26 -0.49 -0.50 -0.50 -0.50 -0.50 

D4H -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.45 -0.28 0.50 0.14 -0.26 -0.46 0.24 0.19 -0.42 

D4V -0.50 -0.50 -0.50 -0.50 -0.45 0.33 0.50 0.03 -0.14 0.39 -0.17 -0.48 -0.50 -0.50 -0.50 -0.50 

 

[Figure 16] shows graphs of A4H (horizontal low 

frequency features) and A4V (vertical low frequency 

features) in [Table 4] and [Table 6]. The results show 

that the characteristics of the low frequency region 

are similar. 

  
Figure 16. A4H (horizontal low frequency characteristics) and A4V (vertical low-frequency characteristics) 
graph in [Table 4] and [Table 6] 

 



[Figure 17] is a graph showing H4V (horizontal high 

frequency feature) in [Table 4] and [Table 6] and 

V4H (vertical high frequency feature) in [Table 4] 

and [Table 6]. The results show that the 

characteristics of the horizontal and vertical high 

frequency regions are different. 

  
Figure 17. H4V (horizontal high frequency characteristic) and V4H (vertical high frequency characteristic) 
graph in [Table 4] and [Table 6] 

 

[Figure 18] is a graph showing D4H (diagonal high-

frequency characteristics) and D4V (diagonal low-

frequency characteristics) in [Table 4] and [Table 6]. 

The results show that the characteristics of the 

diagonal high-frequency regions are different. 

  
Figure 18. D4H (diagonal high frequency characteristics) and D4V (diagonal low frequency characteristic) 
graph in [Table 4] and [Table 6] 

 

3. Neural network machine learning 

[Figure 19] is a model diagram of a neural network 
for this experiment. The input variables are 

sequentially input 16 times with 6 extracted feature 
values, and learned, 10 hidden layers, 6 output layers, 
and 6 output values.

  

 



 
Figure 19. Neural Networks 

 
The Levenberg-Marquardt algorithm (LMA or LM), 

also known as the damped least squares (DLS) 

method in mathematics and computing, is used to 

solve nonlinear least-squares problems [14][15]. This 

minimization problem especially arises in the least-

squares curve fitting. This algorithm usually uses 

more memory but takes less time. When the 

generalization improvement stops as the mean 

squared error of the validation sample increases, 

learning is automatically stopped. In learning, the 

mean squared error is the mean squared difference 

between the output and the target [9]. A lower value 

is better, and 0 means no error. The regression R-

value measures the correlation between the output 

and the target. An R-value of 1 means a close 

relationship, while an R-value of 0 means a random 

relationship [14][15]. 

 
A. T1WI and Dementia PET fusion image 

1) Fitting degree of T1WI and simultaneous MR-

PET images 

[Figure 19] The T1WI feature value in [Table 2] 

was input as the input data of the neural network; for 

target data, the simultaneous MR-PET (T1WI and 

Dementia PET fusion image) feature values in [Table 

1] were input. During learning, the mean squared 

error (MSE) is the mean squared difference between 

the output and the target [14]. A smaller value 

indicates fewer errors. The regression R-value is a 

measure of the correlation between the output and the 

target. If the R-value is close to 1, the relationship is 

close [14][15]. [Table 7] shows that the R-value is 

close to 1 for all of the training, validation, and 

testing, indicating that the T1WI and simultaneous 

MR-PET images are well fit. 

 

 
Table 7. Result of neural network machine learning (T1-weighted MRI and simultaneous MR-PET images) 

  Sample MSE R 

Training 12 5.00E-03 9.9999E-01 

Validation 2 2.96E-02 8.4422E-01 

Testing 2 3.70E-02 8.85649E-01 

 

[Figure 20] is a graph showing the regression. 



 
Figure 20. Regression graph (T1-weighted MRI and simultaneous MR-PET images) 

 

2) Fitting degree of dementia PET image and 

simultaneous MR-PET images 

[Figure 19] For the input data of the neural 
network, the characteristic values of the Dementia-
PET image in [Table 3] were input; for the target 
data, the simultaneous MR-PET (T1WI and 

Dementia PET fusion image) feature values in [Table 
1] were input. [Table 8] shows that the R-value is 
close to 1 for all of the training, validation, and 
testing, indicating that the Dementia-PET image and 
the simultaneous MR-PET image are fitting.  

 
Table 8. Result of neural network machine learning (dementia PET image and simultaneous MR-PET images) 

  Sample MSE R 

Training 12 5.91E-03 9.7027E-01 

Validation 2 2.89E-02 8.0298E-01 

Testing 2 5.15E-02 8.2837E-01 

 

 [Figure 21] is a graph showing regression. 



 
Figure 21. Regression graph (dementia PET image and simultaneous MR-PET images) 

 

B. T2WI and brain tumor PET fusion image 

1) Fitting degree of T2WI and simultaneous MR-

PET images 

[Figure 19] For the input data of the neural 
network, the T2WI feature values in [Table 5] were 

input; for the target data, the simultaneous MR-PET 
(T2WI and Brain tumor-PET fusion image) feature 
values in [Table 4] were input. [Table 9] shows that 
the R-value is close to 1 in all of the training, 
validation, and testing, indicating that the T2WI and 
simultaneous MR-PET images are well fit.  

 

Table 9. Result of neural networks learning (T2-weighted MRI and simultaneous MR-PET images) 

  Sample MSE R 

Training 12 2.49E-03 9.9962E-01 

Validation 2 1.92E-02 9.0777E-01 

Testing 2 1.57E-01 7.6643E-01 

 

[Figure 22] is a graph showing regression. 

 



 
Figure 22. Regression graph (T2-weighted MRI and simultaneous MR-PET images) 

 

2) Fitting degree of brain tumor PET image and 

simultaneous MR-PET images 

 [Figure 19] The Brain tumor-PET characteristic 
values in [Table 6] were input as input data of the 
neural networks. As target data, the simultaneous 
MR-PET (T2WI and Brain tumor-PET fusion image) 

feature values in [Table 4] were input. [Table 10] 
shows that the R-value is close to 1 for both training, 
validation, and testing, indicating that the brain 
tumor-PET image and the simultaneous MR-PET 
image are well fit.  

 
Table 10. Result of neural networks machine learning (brain tumor PET image and simultaneous MR-PET 
images) 

  Sample MSE R 

Training 12 2.49E-03 9.9969E-01 

Validation 2 1.92E-02 9.8251E-01 

Testing 2 1.57E-01 8.7602E-01 

 

[Figure 23] is a graph showing regression. 

 



 
Figure 23. Regression graph (brain tumor PET image and simultaneous MR-PET images) 

 

IV. Conclusion 

With the advancement of science and 

technology, the era of the 4th industrial 

revolution is coming. In the medical field, the 

4th industrial revolution has unified patient 

diagnosis and treatment, and the medical 

environment is rapidly changing from 

standardized evidence-based medicine to 

personalized precision medicine. The center of 

change in the medical environment is artificial 

intelligence (AI) technology. AI technology will 

be used in the entire ‘before, middle, and after’ 

process of diagnostic imaging equipment, such 

as CT, MRI, PET/CT, and simultaneous MR-

PET, thereby providing a foundation for 

providing faster and more precise medical 

images. Simultaneous MR-PET, the state-of-the-

art imaging device, significantly reduces 

radiation exposure (70% or more) compared 

with PET-CT, while the contrast of soft tissues 

is superior to that of PET-CT. If images are 

scanned with sequential MR-PET equipment, a 

separate process of registration after saving each 

acquired image is required, and the possibility 

of errors cannot be ruled out. Simultaneous MR-

PET is a device that simultaneously acquires and 

stores MR images and PET images in one 

session. In this paper, we tested and evaluated 

neural networks to ascertain how well the fusion 

images acquired by simultaneous MR-PET were 

mapped (fit degree) in the fused image of MRI 

and PET features. After pre-processing the 

experimental images at 256 X 256 pixels, the 

disease-like regions (regions with strong signals) 

were segmented with a threshold of 127. The 

segmented image was transformed into a 3-step 

2D DWT to extract 6 X 16 feature values for 

each image. When comparing the extracted 

feature values for each image, we found that the 

low-frequency regions in the horizontal and 

vertical directions showed similar patterns, but 

the patterns were different in the high-frequency 

regions in the horizontal and vertical directions, 



as well as the high-frequency regions in the 

diagonal direction. In particular, the signal 

values were large in the MRI T1 and T2 images. 

The following results were obtained through 
neural network machine learning to analyze the 
degree of fitting. 
 
1. Fitting degree of T1WI and simultaneous MR-PET 

images: 

The regression (R) values were 0.984 for Training, 

0.844 for Validation, and 0.886 for Testing. 

2. Fitting degree of Dementia-PET and simultaneous 

MR-PET images: 

The R values were 0.970 for Training, 0.803 for 

Validation, and 0.828 for Testing. 

3. Fitting degree of T2-weighted MRI and 

simultaneous MR-PET images: 

The R value s were 0.999 for Training, 0.908 for 

Validation, and 0.766 for Testing. 

4. Fitting degree of Brain tumor–PET and 

simultaneous MR-PET images: 

The R values were 0.999 for Training, 0.983 for 
Validation, and 0.876 for Testing. 
 

An R value closer to 1 is more appropriate; 

therefore, each image fused in the simultaneous MR-

PET image verified in this study was suitable. 

However, it is necessary to continue research on 

images acquired with pulse sequences other than 

emphasis images in MRI images. These studies may 

help establish a useful protocol for the process of 

acquiring simultaneous MR-PET images. 
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